Table 2 Enthalpy contributions to the Gibbs free energy of both surface and volume energies were compared using the conventional method.

From: Semi-empirical model for Henry’s law constant of noble gases in molten salts

 

2LiF-\({{\hbox {BeF}}_{2}}\)

LiF–NaF–KF

 

van der Waals

Model

\(\ln (K_H^e) \)

 

Model

\(\ln (K_H^e)\)

 

Noble gas

radius (Å) (ref.10)

\(\Delta H\)

\(\Delta H\)

\(\Delta S\)

RPD

\(\Delta H\)

\(\Delta H\)

\(\Delta S\)

RPD

He

1.40

21513.2

21657.28

108.3

0.7

29635.0

28153.68

100.7

5.1

   

22568.99

109.3

4.8

Ne

1.54

26031.0

24802.48

111.8

4.8

35858.4

36746.68

98.8

2.4

Ar

1.88

38794.0

36707.88

111.0

5.5

53439.8

51669.78

95.0

3.4

Kr

2.02

44787.0

61695.3

Xe

2.16

51210.2

51630.48

106.1

0.8

70543.4

  1. The model from Eq.  (1) using surface tension from Eq.  (3). The regression model for \(\ln (K_H^e)\) is characterized by two conditions: one without the presence of krypton (2LiF–\({{\hbox {BeF}}_{2}}\)) and another with neither krypton nor xenon (LiF–NaF–KF) the van der Waals radius of the noble gas and R, the gas constant 8.314 \(\text{J}\cdot \text{K}^{-1}\cdot \text{mol}^{-1}\) . \(\Delta H\) is expressed in units of \( \text{J}\cdot \text{mol}^{-1}\) and \(\Delta S\) is measured in units of \( \text{J}\, \text{K}^{-1}\cdot \text{mol}^{-1}\).