Table 2 The AUC results of tenfold cross-validation of the training set obtained through 100 iterations of data shuffling.
From: A multimodal machine learning model for predicting dementia conversion in Alzheimer’s disease
Modality combination | Machine learning models | |||||
---|---|---|---|---|---|---|
DT | RF | SVM | LR | GBM | XGB | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
demo | 0.772 ± 0.032 | 0.811 ± 0.029 | 0.792 ± 0.027 | 0.771 ± 0.023 | 0.796 ± 0.031 | 0.798 ± 0.027 |
A | 0.827 ± 0.026 | 0.921 ± 0.015 | 0.952 ± 0.018 | 0.936 ± 0.017 | 0.918 ± 0.017 | 0.921 ± 0.014 |
N | 0.822 ± 0.030 | 0.966 ± 0.008 | 0.991 ± 0.005 | 0.893 ± 0.026 | 0.967 ± 0.009 | 0.959 ± 0.010 |
V | 0.682 ± 0.039 | 0.739 ± 0.032 | 0.688 ± 0.073 | 0.716 ± 0.040 | 0.720 ± 0.041 | 0.728 ± 0.040 |
demo + A | 0.852 ± 0.025 | 0.938 ± 0.012 | 0.965 ± 0.012 | 0.944 ± 0.016 | 0.941 ± 0.013 | 0.944 ± 0.011 |
demo + N | 0.837 ± 0.031 | 0.970 ± 0.008 | 0.991 ± 0.005 | 0.898 ± 0.025 | 0.968 ± 0.010 | 0.959 ± 0.011 |
demo + V | 0.775 ± 0.035 | 0.853 ± 0.023 | 0.835 ± 0.030 | 0.811 ± 0.026 | 0.835 ± 0.030 | 0.842 ± 0.028 |
demo + AN | 0.869 ± 0.027 | 0.967 ± 0.008 | 0.989 ± 0.005 | 0.957 ± 0.016 | 0.978 ± 0.009 | 0.977 ± 0.008 |
demo + NV | 0.836 ± 0.030 | 0.969 ± 0.008 | 0.991 ± 0.005 | 0.906 ± 0.025 | 0.968 ± 0.009 | 0.960 ± 0.010 |
demo + AV | 0.849 ± 0.027 | 0.941 ± 0.012 | 0.961 ± 0.014 | 0.945 ± 0.014 | 0.942 ± 0.012 | 0.946 ± 0.011 |
demo + ANV | 0.871 ± 0.027 | 0.968 ± 0.008 | 0.989 ± 0.005 | 0.959 ± 0.014 | 0.978 ± 0.008 | 0.976 ± 0.007 |