Table 3 The AUC results of the testing set obtained through 100 iterations of data shuffling.
From: A multimodal machine learning model for predicting dementia conversion in Alzheimer’s disease
Modality combination | Machine learning models | |||||
---|---|---|---|---|---|---|
DT | RF | SVM | LR | GBM | XGB | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
demo | 0.647 ± 0.093 | 0.672 ± 0.084 | 0.658 ± 0.091 | 0.722 ± 0.073 | 0.655 ± 0.093 | 0.679 ± 0.086 |
A | 0.698 ± 0.094 | 0.788 ± 0.072 | 0.762 ± 0.080 | 0.756 ± 0.078 | 0.757 ± 0.076 | 0.792 ± 0.066 |
N | 0.658 ± 0.091 | 0.763 ± 0.080 | 0.737 ± 0.066 | 0.648 ± 0.071 | 0.782 ± 0.080 | 0.766 ± 0.084 |
V | 0.471 ± 0.096 | 0.495 ± 0.084 | 0.489 ± 0.088 | 0.558 ± 0.094 | 0.479 ± 0.079 | 0.467 ± 0.083 |
demo + A | 0.722 ± 0.094 | 0.813 ± 0.073 | 0.788 ± 0.071 | 0.796 ± 0.071 | 0.803 ± 0.070 | 0.826 ± 0.063 |
demo + N | 0.661 ± 0.093 | 0.782 ± 0.081 | 0.759 ± 0.063 | 0.644 ± 0.072 | 0.799 ± 0.071 | 0.780 ± 0.077 |
demo + V | 0.610 ± 0.107 | 0.619 ± 0.086 | 0.646 ± 0.099 | 0.705 ± 0.091 | 0.599 ± 0.083 | 0.619 ± 0.084 |
demo + AN | 0.722 ± 0.091 | 0.844 ± 0.063 | 0.826 ± 0.056 | 0.796 ± 0.064 | 0.881 ± 0.053 | 0.865 ± 0.057 |
demo + NV | 0.667 ± 0.101 | 0.781 ± 0.080 | 0.758 ± 0.067 | 0.647 ± 0.073 | 0.798 ± 0.075 | 0.779 ± 0.083 |
demo + AV | 0.716 ± 0.091 | 0.807 ± 0.072 | 0.778 ± 0.070 | 0.809 ± 0.067 | 0.803 ± 0.068 | 0.821 ± 0.061 |
demo + ANV | 0.728 ± 0.098 | 0.840 ± 0.063 | 0.816 ± 0.055 | 0.799 ± 0.065 | 0.879 ± 0.053 | 0.863 ± 0.064 |