Table 2 Comparison of traffic flow prediction performance between STCMFA and baseline models.

From: Spatial–temporal combination and multi-head flow-attention network for traffic flow prediction

Model

PeMS03

PeMS04

PeMS07

PeMS08

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

MAE

MAPE (%)

RMSE

LSTM

21.33

23.33

35.11

27.14

18.20

41.59

29.98

13.20

45.84

22.20

14.20

34.06

DCRNN

18.18

18.91

30.31

24.70

17.12

38.12

25.30

11.66

38.58

17.86

11.45

27.83

STGCN

17.49

17.15

30.12

22.70

14.59

35.55

25.38

11.08

38.78

18.02

11.40

27.83

ASTGCN(r)

17.69

19.40

29.66

22.93

16.56

35.22

28.05

13.92

42.57

18.61

13.08

28.16

STG2Seq

19.03

21.55

29.73

25.20

18.77

38.48

32.77

20.16

47.16

20.17

17.32

30.71

Graph WaveNet

19.85

19.31

32.94

25.45

17.29

39.70

26.85

12.12

42.78

19.13

12.68

31.05

STSGCN

17.48

16.78

29.21

21.19

13.90

33.65

24.26

10.21

39.03

17.13

10.96

26.80

STGODE

16.50

16.69

27.84

20.84

13.77

32.82

22.99

10.14

37.54

16.81

10.62

25.97

STDSGNN

16.12

16.15

25.59

20.67

13.83

32.40

22.91

10.06

34.95

16.73

10.84

25.59

STGPCN (Kronecker)

17.11

16.48

28.99

20.96

13.78

33.35

24.02

10.08

38.77

16.41

10.43

25.60

LEISN-ED

15.83

14.66

26.05

15.94

10.18

24.96

STSGRU

15.45

15.85

24.13

20.11

13.86

31.80

21.50

9.08

34.40

15.68

10.67

25.12

STCMFA(our)

15.48

13.52

22.91

19.78

12.51

29.51

21.34

8.39

33.39

16.09

9.27

24.12