Table 5 Regression results of the influencing factors of the flow network of highly educated talents locally in the Yangtze River Delta.

From: Analysis of spatial characteristics and influencing factors of the flow network of highly educated talents from national and local perspective

Variables

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Nij

Nij

Nij

Nij

Nij

Nij

Nij

GDPi

0.6646**

     

1.1618***

(0.3175)

     

(0.3835)

GDPj

2.6113***

     

2.7176

(0.2135)

     

(2.9961)

Collegesj

 

2.8013***

    

1.8344

 

(0.3697)

    

(2.3127)

Universitiesj

 

0.3274

    

0.1803

 

(0.2469)

    

(0.4954)

Sciencej

  

2.8749***

   

1.4895

  

(0.2556)

   

(1.4768)

Hospitalsj

   

0.1553

  

0.0759

   

(0.8286)

  

(2.1510)

Busesj

   

2.7303***

  

− 0.8492

   

(0.7870)

  

(4.5431)

Greenbeltj

    

2.9576***

 

0.8449

    

(0.7066)

 

(0.9699)

Pollutioni

    

− 0.0196

 

0.7319**

    

(0.2480)

 

(0.3356)

Distanceij

     

− 0.9635

− 1.2836**

     

(0.7727)

(0.6125)

Provinceij

     

0.8820***

1.6854***

     

(0.3294)

(0.2737)

Constant

− 4.1661***

− 4.7113***

− 4.4405***

− 4.3992***

− 1.8663***

− 2.2599***

− 7.1211***

(0.1554)

(0.1957)

(0.1797)

(0.1658)

(0.3256)

(0.3961)

(0.8013)

lnalpha

− 31.5358

− 31.5358

− 31.5358

− 31.5358

− 31.5358

− 31.5358

− 31.5358

(0.0000)

(0.0000)

(0.0000)

(0.0000)

(0.0000)

(0.0000)

(0.0000)

Observations

283

283

283

283

283

283

283

Wald chi2

149.56

140.10

126.48

153.00

17.72

8.85

352.04

Prob > chi2

0.0000

0.0000

0.0000

0.0000

0.0001

0.0120

0.0000

Log

pseudolikelihood

− 44.59

− 43.71

− 44.67

− 44.20

− 50.46

− 51.83

− 41.20

  1. Robust standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1.