Table 3 Classification performance of the weak and ensemble classifiers.
Model | Accuracy | ROC-AUC | F1-score |
---|---|---|---|
GM | 0.614 | 0.616 | 0.616 |
Decision tree | 0.713 | 0.715 | 0.715 |
SVM linear | 0.733 | 0.732 | 0.735 |
KNN + 10-folds cross-validation | 0.816 | 0.797 | 0.814 |
XGBoost | 0.797 | 0.797 | 0.806 |
RBF | 0.675 | 0.719 | 0.716 |
Random forest | 0.725 | 0.728 | 0.728 |
Naïve Bayes | 0.721 | Nfble0.728 | 0.724 |
Ml (c(4, 3, 3)) | 0.733 | 0.732 | 0.735 |
Ensemble 1 | 0.895 | 0.897 | 0.897 |
Ensemble 2 | 0.912 | 0.916 | 0.916 |