Table 9 Comparison of the Proposed approach with RF and KNN classifiers outperforms the state-of-the-art MS detection methods conducted on the eHealth lab dataset, achieving top accuracy and sensitivity. Specifically, the combination with KNN reaches the highest marks, showcasing the effectiveness of this method in MS detection.

From: AI-based model for automatic identification of multiple sclerosis based on enhanced sea-horse optimizer and MRI scans

MS detection methods

Accuracy

Sensitivity

HWT + PCA + LR61

89.72

-

WE + FNN + AGA44

91.95

91.91

HMI + FNN + PSO46

91.70

91.67

GLCM + FNN45

92.75

92.75

MAMFM62

93.83

94.08

GLCM + ensemble + LogitBoost41

94.91

95.79

GLCM + GLRLM63

95.14

95.27

6l-CNN64

95.82

95.98

DWT + PCA + LS-SVM65

96.21

95.86

WE + HBP66

96.72

96.15

DWT + PPCA + RF67

96.40

96.01

FRFE + MLP + ST-Jaya16

97.39

97.40

BWT + RKPCA + LR38

97.76

97.12

MBD + SHLNN + TSR-BBO68

97.80

97.78

SWE + KNN37

97.94

96.15

BWF + FAGA69

97.89

98.00

GLCM + LBP + Hybrid SHOSCA + RF (ours)

97.77

97.73

GLCM + LBP + Hybrid SHOSCA + KNN (ours)

97.97

98.89

  1. *Significant are in bold.