Table 9 Comparison of the Proposed approach with RF and KNN classifiers outperforms the state-of-the-art MS detection methods conducted on the eHealth lab dataset, achieving top accuracy and sensitivity. Specifically, the combination with KNN reaches the highest marks, showcasing the effectiveness of this method in MS detection.
MS detection methods | Accuracy | Sensitivity |
---|---|---|
HWT + PCA + LR61 | 89.72 | - |
WE + FNN + AGA44 | 91.95 | 91.91 |
HMI + FNN + PSO46 | 91.70 | 91.67 |
GLCM + FNN45 | 92.75 | 92.75 |
MAMFM62 | 93.83 | 94.08 |
GLCM + ensemble + LogitBoost41 | 94.91 | 95.79 |
GLCM + GLRLM63 | 95.14 | 95.27 |
6l-CNN64 | 95.82 | 95.98 |
DWT + PCA + LS-SVM65 | 96.21 | 95.86 |
WE + HBP66 | 96.72 | 96.15 |
DWT + PPCA + RF67 | 96.40 | 96.01 |
FRFE + MLP + ST-Jaya16 | 97.39 | 97.40 |
BWT + RKPCA + LR38 | 97.76 | 97.12 |
MBD + SHLNN + TSR-BBO68 | 97.80 | 97.78 |
SWE + KNN37 | 97.94 | 96.15 |
BWF + FAGA69 | 97.89 | 98.00 |
GLCM + LBP + Hybrid SHOSCA + RF (ours) | 97.77 | 97.73 |
GLCM + LBP + Hybrid SHOSCA + KNN (ours) | 97.97 | 98.89 |