Table 2 The exact and NITM results of \(\nu (\zeta ,\varphi ,\Im )\) and absolute error of Example 1.

From: Analysis of some dynamical systems by combination of two different methods

\(({\zeta ,{\varphi }})\)

\(v({\zeta ,{\varphi }})\) at

\({ \varpi }=\)0.5

\(v({\zeta ,{\varphi }})\) at

\({ \varpi }=\)0.75

\(v({\zeta ,{\Im }})\) at

\({ \varpi }=\)1

Exact

HPM26

Absolute error

NIM

solution

(0.1,0.1)

0.0939215

0.0939015

0.09389

0.09389

5.86860\({ \times }10^{-11}\)

3.28081\({ \times }10^{-12}\)

(0.1,0.3)

0.0939536

0.0939319

0.0939146

0.0939146

3.04565\({ \times }10^{-10}\)

8.85812\({ \times }10^{-11}\)

(0.1,0.5)

0.0939757

0.0939571

0.0939391

0.0939391

3.08812\({ \times }10^{-8}\)

4.10099\({ \times }10^{-10}\)

(0.2,0.1)

0.0915064

0.091487

0.0914759

0.0914759

5.56884\({ \times }10^{-11}\)

3.07768\({ \times }10^{-12}\)

(0.2,0.3)

0.0915375

0.0915165

0.0914997

0.0914997

2.97260\({ \times }10^{-08}\)

8.30963\({ \times }10^{-11}\)

(0.2,0.5)

0.0915589

0.0915409

0.0915235

0.0915235

2.92626\({ \times }10^{-8}\)

3.84706\({ \times }10^{-10}\)

(0.3,0.1)

0.0891657

0.0891469

0.0891361

0.0891361

5.28609\({ \times }10^{-12}\)

2.88849\({ \times }10^{-12}\)

(0.3,0.3)

0.0891958

0.0891754

0.0891592

0.0891592

2.77382\({ \times }10^{-9}\)

3.6107\({ \times }10^{-10}\)

(0.3,0.5)

0.0892166

0.0891992

0.0891822

0.0891822

5.01929\({ \times }10^{-8}\)

2.71246\({ \times }10^{-12}\)

(0.4,0.1)

0.0868965

0.0868782

0.0868678

0.0868678

2.83229\({ \times }10^{-9}\)

7.32356\({ \times }10^{-11}\)

(0.4,0.3)

0.0869257

0.0869059

0.0868901

0.08688901

2.63019\({ \times }10^{-10}\)

3.39055\({ \times }10^{-10}\)

(0.4,0.5)

0.0869458

0.0869289

0.0869125

0.0869125

4.76741\({ \times }10^{-11}\)

2.54828\({ \times }10^{-12}\)

(0.5,0.1)

0.0846961

0.0846784

0.0846683

0.0846683

2.76492\({ \times }10^{-10}\)

6.88039\({ \times }10^{-11}\)

(0.5,0.3)

0.0847244

0.0847052

0.0846899

0.0846899

2.49480\({ \times }10^{-9}\)

3.18537\({ \times }10^{-10}\)