Table 9 Performance evaluation metrics/parameters of different machine learning methods based on tenfold cross validation.
Learning methods | Sensitivity | Specificity | Accuracy | MCC | AUC |
|---|---|---|---|---|---|
SMO | 71.6 | 90.0 | 80.6 | 0.625 | 0.808 |
MLP | 78.1 | 83.1 | 80.6 | 0.612 | 0.863 |
ROF | 91.5 | 79.2 | 84.7 | 0.704 | 0.925 |
PART | 84.4 | 80.8 | 82.6 | 0.652 | 0.848 |
J48 | 84.4 | 82.3 | 83.3 | 0.666 | 0.843 |
RF | 89.7 | 83.8 | 86.7 | 0.736 | 0.950 |
RARF | 90.9 | 85.6 | 88.2 | 0.766 | 0.956 |