
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11728  | https://doi.org/10.1038/s41598-024-62300-y

www.nature.com/scientificreports

Assessing eco‑geographic 
influences on COVID‑19 
transmission: a global analysis
Jing Pan 1,2, Arivizhivendhan Kannan Villalan 1,2, Guanying Ni 3, Renna Wu 3, ShiFeng Sui 4, 
Xiaodong Wu 5* & XiaoLong Wang 1,2*

COVID-19 has been massively transmitted for almost 3 years, and its multiple variants have caused 
serious health problems and an economic crisis. Our goal was to identify the influencing factors that 
reduce the threshold of disease transmission and to analyze the epidemiological patterns of COVID-
19. This study served as an early assessment of the epidemiological characteristics of COVID-19 using 
the MaxEnt species distribution algorithm using the maximum entropy model. The transmission of 
COVID-19 was evaluated based on human factors and environmental variables, including climate, 
terrain and vegetation, along with COVID-19 daily confirmed case location data. The results of the 
SDM model indicate that population density was the major factor influencing the spread of COVID-
19. Altitude, land cover and climatic factor showed low impact. We identified a set of practical, 
high-resolution, multi-factor-based maximum entropy ecological niche risk prediction systems to 
assess the transmission risk of the COVID-19 epidemic globally. This study provided a comprehensive 
analysis of various factors influencing the transmission of COVID-19, incorporating both human and 
environmental variables. These findings emphasize the role of different types of influencing variables 
in disease transmission, which could have implications for global health regulations and preparedness 
strategies for future outbreaks.

Keywords  COVID-19, Epidemiological characteristics analysis, Spatial modeling, Maximum entropy, 
Population-based studies, Risk assessment

COVID-19 (Corona Virus Disease 2019) has become a global public health threat. Coronavirus Disease 2019 
(COVID-19) is a severe acute respiratory syndrome caused by coronavirus type 2 (SARS-CoV-2), which emerged 
in December 2019. The World Health Organization declared it a global pandemic on March 11, 20201,2. Coro-
naviruses are a large group of viruses, some of which can cause respiratory diseases in humans and often trigger 
serious global public health crises. The coronavirus (CoV) belongs to the family Coronaviridae and is a single-
stranded envelope virus with an RNA genome size of approximately 26–32 kb3. SARS-CoV-2 can be transmitted 
from person to person through droplets, aerosols, and contact4. Common clinical manifestations include fever, 
cough, fatigue, difficulty breathing, diarrhea, nausea, and vomiting4–6. Moreover, SARS-CoV-2 infection may 
lead to long-term lung damage and relatively frequent cardiac involvement7. The SARS-CoV-2 quickly spread 
worldwide within a few months, leading to global panic and conflicts of interest8,9. As of March 1, 2023, the 
global confirmed cases of COVID-19 were 676 million, with 6.87 million deaths in 188 countries/regions10. 
Research suggests that the actual number of deaths is higher, which was estimated to be as high as 20 million as of 
202211,12. Although the new generation vaccines and anti-COVID-19 treatment schemes prove helpful in manag-
ing acute COVID-19 infection, scientists express concern that the persistent unvaccinated population globally 
may pose a greater risk for the emergence of new mutated strains, such as Omicron13. Highly transmissible 
variants to a certain extent hinder the suppression of the vaccine against the spread of COVID-1914, monitoring 
of mutated strains remains largely inadequate, with an incomplete understanding of the risk of reinfection15,16. 
Many public health experts still believe that COVID-19 is an ongoing health threat17. COVID-19 has become a 
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serious chronic disease globally at present and even in the next few years that constitutes a considerable disease 
burden18,19, but it still lacks sufficient awareness. Understanding the influence of each factor on the transmission 
of catastrophic threats like COVID-19 is crucial for successful policy implementation and risk management to 
control the outbreak20.

The impact of environmental and human factors on the transmission of COVID-19 has been a significant 
question since the beginning of the pandemic20–22. Various meteorological factors, such as temperature and 
humidity, influenced the infection rate of respiratory viruses and host immunity, leading to variations in the 
spread of respiratory viruses in different regions22. Sajadi et al. conducted research on 50 cities throughout the 
world and found that cities with widespread community transmission were mostly distributed between 30°N 
and 50°N with temperatures ranging from 5 to 11 °C23. The epidemic transmission trajectory of many coun-
tries shows strong seasonal patterns, with fewer cases in summer and more cases in winter24. The temperature 
increase from 22 to 34 °C significantly activated the virus-like particles (VLPs), causing damage to the stability 
of the virus25. Higher transmissibility is likely to be seen at low temperatures, while higher severity is likely to 
present at high and moderately low temperatures in Japan26, while there was no significant correlation between 
temperature and COVID-19 in Spain, which gives an opposite conclusion27. Similarly, humidity has a negative 
correlation or no correlation with COVID-19 cases. A study by Wu et al. demonstrated a negative correlation 
between COVID-19 cases and humidity levels28, that high temperature and high relative humidity reduce the 
viability, stability, survival, and transmission of COVID-1929. A study found that there is no correlation between 
humidity and COVID-19 cases in Pakistan30. A large number of studies have explored the relationship between 
the spread of COVID-19 and meteorological factors, but it is still controversial31. Areas with lower solar radiation 
showed high exposure rate32. Solar radiation can destroy the genetic material of viruses, such as DNA or RNA, 
thus threatening the survival of viruses33. The daily growth rates of cumulative COVID-19 deaths decreased by 
1.2% with each unit increase in the UV index34.

The influence of meteorological drivers on COVID-19 transmission globally is confounded by other factors, 
such as altitude, population density, and land cover. Previous researches have revealed that population density was 
more important than meteorological factors35. High population density is more likely to lead to the outbreak of 
severe acute respiratory COVID-1936. Because the respiratory virus is mainly transmitted through the respiratory 
tract, the higher the population density, the longer the time for the spread and attenuation of COVID-1937. The 
research of Nasiri in Iran indicates that the number of patients is higher in areas with high population density 
and commercial and residential land38. The natural environment is positively correlated with public health39,40. 
More green spaces in the short term are also associated with lower morbidity and mortality rates41. The study 
underscores the importance of incorporating natural land cover as a means of mitigating the risks and negative 
consequences of future pandemics like COVID-19 and promoting overall public health. Meanwhile, available 
epidemiological data suggest a negative correlation between altitude and the incidence of COVID-1942. The city 
size and population density of high-altitude regions are lower than in low-altitude regions, which decreases the 
mobility of high-altitude regions, thereby reducing the transmission of the pandemic in high-altitude regions43.

So far, despite numerous studies on the impact of various factors on the spread of COVID-19, few studies 
have simultaneously considered meteorological variables, population factors, land cover types, altitude, and 
other terrain factors to investigate their combined influence on the development of COVID-19. In addition, 
most studies are limited to a single country or region, but the understanding of the relationship between them is 
relatively limited on a global scale. Moreover, most of the research data worldwide is based on national sources, 
which are not accurate enough. Therefore, a comprehensive assessment is needed to understand the dynam-
ics of COVID-19 transmission worldwide. Systematic and scientific research on the epidemic characteristics, 
influencing factors, and transmission risks of newly emerging infectious diseases, could better establish an early 
warning system, predict the future pandemic trends, and avoid more public health losses.

Risk prediction is an important measure for controlling and preventing outbreaks of infectious diseases, and 
has been used to draw COVID-19 epidemic maps, which are methods to deeply reveal the dynamics of the virus 
and have powerful functions in establishing disease transmission models, detecting important hotspots, and pre-
dicting the occurrence of diseases in the future. Among numerous niche models, MaxEnt has been widely used 
due to its advantages44,45. It has been widely used in many diseases, including COVID-193,46,47. To overcome the 
above shortcomings, the purpose of this study is to conduct a comprehensive analysis based on geographically 
narrow data sources, use the MaxEnt model to assess the collective impact of the above factors on COVID-19 
cases, and further explore the differences in these impacts in different regions. We gathered global COVID-19 
case data at a city scale along with population density, land cover, altitude, solar radiation, and climate factors. 
MaxEnt, ArcGIS, and SPSS were used to deeply explore the impact of meteorological, population density, and 
other relevant factors on the spread of COVID-19. The main objective of the study is to explore the potential 
interaction and identification of COVID-19 risk areas and hotspots at a global scale, in order to provide guidance 
for the scientific prevention and control of the COVID-19 outbreak. This research would provide useful guidance 
for local health authorities in deciding where to prioritize effective interventions on a fine scale.

Results
An early assessment of the epidemiological characteristics of SARS-CoV-2 was conducted using the MaxEnt 
species distribution algorithm to study the future risk distribution of COVID-19 infection risk hotspots. A global 
map was classified based on geographical regions sourced from Natural Earth (http://​www.​natur​alear​thdata.​
com/) and used for the MaxEnt model (Fig. 1). A total of 28,142 COVID-19 occurrence points were selected after 
filtering for application in the MaxEnt to evaluate the future possible risk distribution of COVID-19. The model 
parameters were optimized and evaluated for the effective prediction of COVID-19 distribution. The ROC curves 
of prediction results from the MaxEnt models regarding sensitivity and specificity are in Figures S19–S22. The 
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average result obtained from the tenfold cross‐validation of the COVID-19 species distribution model (SDM) 
revealed that the average AUC value of 28 models was above 0.8, wherein, 19 models were above 0.9.

Rarefying and variables selection
The accuracy of SDM model was validated based on AUC values, with the expectation that the best model would 
have an AUC value near 1. The average output result of the tenfold cross‐validation of the COVID-19 in SDM 
model demonstrated high training and test AUC values, combined with low standard deviations. The results 
indicated that the average AUC value for all research areas ranged from 0.711 to 0.994 (Fig. 2a). Among the 31 
models, only three models, such as SDM4, SDM8, and SDM28, had AUC values below 0.8 although they still 
exceeded 0.7. This suggests that the accuracy of the models was ‘very good’, and the prediction results were reli-
able, enabling the prediction of COVID-19 distribution. The results of the MaxEnt software simulation output 
ranged from 0 to 1, where values were closer to 1 corresponded to a higher probability of species existence. The 
environmental variables and mean range of VIF value for all niche models were provided in Table 1. The natural 

Figure 1.   Global map classification based on geographical regions sourced from Natural Earth (http://​www.​
natur​alear​thdata.​com/).

Figure 2.   (a) AUC values of MaxEnt models and (b) contributions of important predictor variables to the mod.

http://www.naturalearthdata.com/
http://www.naturalearthdata.com/
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Table 1.   The VIF value of all models and its detailed information of geographical region, COVID-19 
occurrence point, elevation and environment variables.

Models Regions COVID-19 presence points Elevation Natural break Environmental layers VIF

SDM-1 North pole 105 Below 1500 10 km Population, land cover and maximum temperature of 
March (tmax3) 1.014–1.742

SDM-2 Middle North America 1980 Below 1500 10 km Population and maximum temperature of May (tmax5) 1.213–3.642

SDM-3 Middle North America 1276 Above 1500 10 km Minimum temperature of July (tmin7), spring, popula-
tion and land cover 1.009–2.931

SDM-4 Lower North America 2170 Below 1500 10 km
Population, elevation, land cover, minimum temperature 
of November (tmin11) and mean temperature of March 
(temp3)

1.038–9.558

SDM-5 Lower North America 823 Above 1500 10 km Minimum temperature of July (tmin7), spring, popula-
tion and land cover 1.000

SDM-6 Upper Sorth America 879 Below 1500 10 km Population, land cover and autumn 1.000–3.409

SDM-7 Upper South America 11 Above 1500 10 km Population, autumn, mean temperature of October 
(temp10) and land cover 1.0001–5.584

SDM-8 Middle Sorth America 3940 Below 1500 10 km Land cover, population, mean temperature of June 
(temp6) and autum 1.000

SDM-9 Middle South America 11 Above 1500 10 km Mean temperature of October (temp10), land cover and 
elevation 0.965–0.993

SDM-10 Lower Sorth America 1753 Below 1500 10 km Population, land cover and maximum temperature of 
January (tmax1) 1.000

SDM-11 Western Europe 105 Below 1500 160 km
Elevation, population, land cover, winter, maximum 
temperature of August (tmax8) and Precipitation of Wet-
test Month (bio13)

1.014–1.078

SDM-12 Western Europe 41 Above 1500 10 km Minimum temperature of July (tmin7), precipitation of 
June (prec6), winter, land cover and population 1.000

SDM-13 Russia,etc 1224 Below 1500 40 km Population the mean monthly Precipitation of Warmest 
Quarter (bio18) and summer 1.000

SDM-14 Russia,etc 28 Above 1500 20 km The mean monthly precipitation amount of the wettest 
quarter (bio16), population and land cove 1.001–6.921

SDM-15 Iran,etc.; 103 Above 1500 10 km
Population, summer, the Mean Temperature of Wettest 
Quarter (bio8), and minimum temperature of December 
(tmin12)

1.001–1.233

SDM-16 Pamirs Plateau 32 Below 1500 50 km
Population, land cover, precipitation of December 
(prec12) and minimum temperature of Octoberber 
(tmin10)

1.000–1.005

SDM-17 Pamirs Plateau 25 Above 1500 10 km Land cover, population and the precipitation amount of 
January (prec1) 1.000–1.765

SDM-18 India, etc 85 Below 1500 10 km The mean monthly precipitation amount of the wettest 
quarter (bio16), population and land cover 1.000

SDM-19 India, etc 7 Above 1500 10 km Bio5, Tmax3 maximum temperature
of March, Bio4 1.000

SDM-20 Up Qinling-Huaihe Line 367 Below 1500 10 km Population, land cover, elevation, precipitation of August 
(prec8) summer 1.000–1.911

SDM-21 Up Qinling-Huaihe Line 18 Above 1500 10 km Land cover, spring, maximum temperature of January 
(tmax1), population 1.000

SDM-22 Blow Qinling-Huaihe Line 717 Below 1500 10 km Population, land cover, elevation 1.000–1.009

SDM-23 Blow Qinling-Huaihe Line 20 Above 1500 10 km Population, elevation, land cover 1.000

SDM-24 Australia 289 Below 1500 10 km Population, mean temperature of January (temp1) 1.000

SDM-25 Cuba 47 Below 1500 40 km Land cover, population, precipitation amount of June 
(prec6) and minimum temperature of April (tmin4) 1.007–1.794

SDM-26 England 60 Below 1500 50 km Population, land cover, maximum temperature of June 
(tmax6), minimum temperature of June (tmin6), summer 1.011–1.116

SDM-27 Japan 58 Below 1500 20 km Population, maximum temperature of January (tmax1), 
land cover 1.000

SDM-28 The Philippines 69 Below 1500 110 km Maximum temperature of September (tmax9), land cover, 
precipitation amount of January (prec1), population 1.136–5.862

SDM-29 The Philippines 8 Above 1500 0 km Minimum temperature of June (tmin12), land cover 1.000

SDM-30 Indonisia 163 Below 1500 60 km Population, land cover, maximum temperature of Febru-
ary (tmax2), spring 1.000–2.005

SDM-31 New Zealand 20 Below 1500 10 km
Population, maximum temperature of September
(tmax9), land cover, mean temperature of September 
(temp9)

1.000
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break was used as the minimum distance allowed between training points for the spatially filtered occurrence 
dataset for spotted knapweed. The application of this minimum distance in spatial filtering led to significant 
reduction in training sample size (Table 1).

Influence of population density on COVID‑19
The result revealed that population density variables significantly influenced the transmission of COVID-19 
more than other variables (Fig. 2b). The influence of population density on risk distribution areas was notably 
high in most of the models (Fig. 2b). The SDM-31 had the highest impact at 93.2%, followed by SDM-20 (92.9%), 
SDM-22 (91%), SDM-6 (88.5%), SDM-24 (84.3%), SDM-2 (82.5%), SDM-30 (77.9%), SDM-13 (77.7%), SDM-15 
(70.3%), SDM-9 (65.2%), SDM-23 (62.8%), SDM-1 (62.2%), SDM-10 (60.1%), SDM-7 (55.2%), SDM-16 (54.3%), 
SDM-26 (54.2%), SDM-4 (45.9%), SDM-27 (39.6%), SDM-8 (37.8%), SDM-14 (36.6%), SDM-25 (34.5%), SDM-
11 (29.5%), SDM-17 (22.9%), SDM-5 (19.3%), SDM-18 (15.4%), SDM-21 (11.9%) (Tables 2 and 3). Out of a total 
of 31 SDM models, 8 SDM models contributed more than 80% to the specified environmental and geographic 
variables, and 6 of these SDM models were highly influenced by population density (Fig. 3). The population 
density factor significantly influenced both mainland and island countries in most of the models, except for two 
niche models. The MaxEnt response curves of each model predictor are shown in Figures S2–S13. The popula-
tion density in New Zealand significantly impacts the distribution of SARS-CoV-2, with an estimated contribu-
tion of up to 93.2% (Table 2). The distribution probability of SARS-CoV-2 becomes stable when the population 
density reaches 2000 people/km2. Similarly, estimates of contribution above 80% were reported for regions in 
upper South America, Australia, and Middle North America. In most areas below 1500 m of elevation, such as 
India and Western Europe, an increase in population density led to a significant reduction in the distribution 
probability of SARS-CoV-2. The distribution probability of COVID-19 increased sharply with the increase in 
population density in most regions when the elevation was below 1500 m.

Influence of land cover and elevation variables on COVID‑19
The probability of COVID-19 distribution was not influenced by population density factor in some regions, such 
as those with elevation greater than 1500 m in the Philippines, Middle North America, and India (Figures S3, 

Table 2.   Percentage contributions of predictor variables to the MaxEnt models blow than 1500 m.

SDM-1 SDM-2 SDM-4 SDM-6 SDM-8
SDM-
10

SDM-
11

SDM-
13

SDM-
16

SDM-
18

SDM-
20

SDM-
22

SDM-
24

SDM-
25

SDM-
26

SDM-
27

SDM-
28

SDM-
30

SDM-
31

Popula-
tion 62.2 82.5 45.9 88.5 37.8 60.1 29.5 77.7 54.3 15.4 92.9 91 84.3 34.5 54.2 39.6 6.5 77.9 93.2

Land-
cover 10.2 8.4 6.6 40.1 23 19.2 27.3 25.7 6 6.3 43.7 38 29 23.4 9.4 2.6

Elevation 42.6 38.8 0.7 2.8

Spring 5.8 2.3 5.8

Summer 8.7 0.1 0.3

Autumn 4.9 19.7

Winter 3.3

Tmax1 16.9 17.9 31.4

Tmax2 6.9

Tmax3 27.6

Tmax5 17.5

Tmax6 4.6

Tmax8 5.9

Tmax9 60.1 3.5

Tmin4 2.9

Tmin6 2.9

Tmin10 5.2

Tmin11 3.2

Temp1 15.7

Temp6 2.4

Temp9 0.7

Prec1 10.1

Prec6 16

Prec8 0.3

Prec12 13.3

Bio12 35.1

Bio13 3.3

Bio18 13.6
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S9, and S12). In areas with elevations above 1500 m, the contribution rate of population density was relatively 
lower (Figure S2b).

The proportions of altitude and land cover showed a significant influence on the probability of COVID-19 
distribution (Fig. 2b). In regions below 1500 m altitude, the land cover had a significant impact on these models, 
followed by the impact of population density (Figure S2a). In regions above 1500 m altitude, the terrain vari-
ables showed a significant impact. The land cover relatively influences the probability of COVID-19 distribution 
models such as SDM-17 (58%), SDM-21 (45.7%), SDM-25 (43.7%), SDM-8 (40.1%), SDM-26 (38%), SDM-27 
(29%), SDM-16 (27.3%), SDM-9 (25.7%), SDM-18 (25.7%), SDM-28 (23.4%), SDM-10 (23%), SDM-11 (19.2%) 
and SDM-1 (10.2%) (Tables 2 and 3). The elevation below 1500 m in the Qinling-Huaihe Line region exhibited 
contributions greater than 90% (Table 2). Additionally, the distribution probability of SARS-CoV-2 decreased 
with an increase in population density in the upper part of South America, north of the Qinling Mountains and 
Huai River, and in areas above 1500 m elevation. In these regions, the contribution rate of population density 
was relatively lower, while the proportions of altitude and land cover were significantly increased. Moreover, 
when elevation was more than 1500 m on the Pamirs Plateau and up Qinling-Huaihe Line region, land cover 
also had a quite important impact. The average output result of tenfold cross-validation for COVID-19 indicates 
that the land cover was significantly influenced in the Northern Hemisphere. The simulation results further 
emphasized that land cover was the third most important factor influenced the distribution and diffusion of 
COVID-19 (Fig. 2b). The results reveal that urban areas with a land cover value of 190 exhibit the highest prob-
ability of COVID-19 distribution, which also conformed to the actual situation (Figures S3c, S4e, S5a, S6a, S9c, 
S10ae, S12d, S13ac).

Influence of climate variables on COVID‑19
In regions above 1500 m altitude, the impact of population density decreases, and the impact of climate fac-
tors increases (Figure S2). Continuous low-probability predictors for COVID-19 include temperature, incident 
solar radiation, and rainfall. When the altitude is below 1500 m, Tmax1 (Maximum temperature of January) 
(SDM-10, SDM-18, and SDM-27), Tmax9 (Maximum temperature of September) (SDM-28), and Bio12 (Annual 
Precipitation) (SDM-18) were the most important variables influencing the transmission of COVID-19 (Table 2). 
When the altitude is more than 1500 m, Tmin7 (Minimum temperature of July) (SDM-12), Tmin12 (Minimum 
temperature of December) (SDM-29), Bio5 (Max Temperature of Warmest Month) (SDM-19), and Temp10 
(Mean temperature of October) (SDM-9) were the most important variables influencing the transmission of 
COVID-19 (Figure S2) (Table 3). The maximum temperature of the warmest month in India, with an elevation 
above 1500 m, emerged as the most influential variable on the distribution of COVID-19, followed by Tmax3; 
temperature seasonality was the least influential factor (Table 1). The environmental variables (temperature, 
solar radiation, and precipitation) predominantly influence the occurrence of COVID-19 during spring and 
summer near the poles of the northern and southern hemispheres. In contrast, solar radiation in autumn and 
winter were the main influencing environmental variables in the equatorial region (Figures S3–S14 and Table 1).

Geographical distribution of COVID‑19
The impact of demographic factors (population density) and environmental variables (elevation, precipita-
tion, incoming solar radiation, and temperature) on the transmission dynamics of SARS-CoV-2 was assessed 
with the jackknife analysis (Figure S15–S18). The jackknife analysis, a systematic form of re-sampling, repeats 
the process by leaving out a different value and recalculating the test statistic for each time. The model output 

Table 3.   Percentage contributions of predictor variables to the MaxEnt models above than 1500 m.

SDM-3 SDM-5 SDM-7 SDM-9 SDM-12 SDM-14 SDM-15 SDM-17 SDM-19 SDM-21 SDM-23 SDM-29

Population 19.3 55.2 9.1 36.6 70.3 22.9 11.9 62.8

Landcover 1.7 0.8 25.7 8.8 58 45.7 2.3 3.5

Elevation 9.1 34.9

Spring 65.8 25.6

Summer 84.9 17.2 15.7

Autumn 37.9

Winter 9.2

Tmax1 16.7

Tmax3 15.1 20.9

Tmin7 13.2 54.2 46.3

Tmin12 6.7 96.5

Temp10 6 65.2

Prec1 19.1

Prec6 18.8

Bio4 13.8

Bio5 65.3

Bio8 7.2
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was reclassified into four types of potential distributions as follows: not suitable area (0–0.2); low suitable area 
(0.2–0.4); medium suitable area (0.4–0.6); highly suitable area by ArcGIS 10.248,49. Figure 4 encompasses the 
global potential distribution mapping of COVID-19, illustrating the comprehensive scope of the virus’s potential 
spread across different regions and locales. The high-risk areas for COVID 19 were located between latitudes 
0–50°N and 0–30°S. These include the central and lower parts of North America, concentrated in the northwest 
and southeast of the United States, as well as central and southern Mexico. In parts of South America, there are 
western Peru, northern Chile, and eastern Brazil. In the Eurasian continent, the high-risk areas are in Northwest 

Figure 3.   Analysis of COVID-19 distribution models’ response curves influenced by factors which contribution 
rate is more than 80%. The models (a) SDM2, (b) SDM3, (c) SDM6, (d) SDM20, (e) SDM22, (f) SDM24, (g) 
SDM29 and (h) SDM (31).
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and southern Asia, distributed in southern Myanmar, northern and southern Thailand, northeastern Vietnam, 
and southern China; Southeast Europe, including all of Ukraine, northwest Germany, western, northern, and 
southeastern France; and the western part of the Arctic Circle. Ukraine, Belarus, southwestern Russia, north-
western Germany, small areas in southern Guangzhou, southern Harbin, and the entire Changchun region of 
China also showed high risk. South Korea, Cambodia, southern Myanmar, and southern Vietnam were also 
classified as high-risk. Additionally, there are high-risk areas in Southeast Oceania, Cuba as a whole, Southeast 
United Kingdom, Southeast Indonesia, all over the Philippines, southern Japan, and northeastern New Zealand. 

Figure 4.   Prediction of the COVID 19 global spatial distribution and potential risk hotspot areas. The map was 
made in ArcGIS 10.2 using the resulting rasters produced by MaxEnt.
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In North America, most of the central region of the United States and a small portion of the Northeast, as well 
as small portions of the central northern and southern coastal regions of Mexico, were predicted as medium-
risk regions. Central and eastern Ukraine, central and eastern India, northern and Middle eastern Thailand, 
Hainan, and northeast Harbin in China, and all of Malaysia were also predicted as medium-risk regions. In 
North America, southern Canada, the northern and southwestern United States, and northern Mexico; in South 
America, northwest Brazil, Argentina, most of Russia (except the southwest), most of Mongolia, and Australia 
(except the southern region) were shown as low-risk areas (Fig. 4).

Discussion
Various studies employed different methods and outcome variables in exploring the influencing factors of the 
COVID-19 pandemic. The existing literature mainly utilizes a generalized additive model21, generalized linear 
model, Spearman’s correlation analysis50,51 and Pearson’s correlation analysis52. Regarding sample selection, the 
use of national-level samples alone fails to account for the regional variations in weather conditions among 
countries with large areas and uneven population distribution, such as the United States, China, and Brazil53. 
Moreover, solely selecting geographic areas with confirmed cases as samples for statistical analysis is prone to 
sample selection bias53. However, these methods have certain limitations and may lead to estimation bias since 
the data often fail to meet the underlying assumptions of the methods. Consequently, they are relatively complex 
to operate and not user-friendly for beginners. Furthermore, these methods are not suitable for hotspot analysis 
in regions with incomplete or unreliable reporting. MaxEnt model’s ability to handle large datasets and intricate 
relationships between variables makes it a popular tool for ecological niche modeling and species dispersion. 
A study on early forecasting of the potential risk zones of COVID-19 in Chinese megacities using the MaxEnt 
model shows that MaxEnt can meet the timeliness and fine spatial scale requirements for predicting the spread of 
COVID-19 outbreaks54. An analysis using the MaxEnt model to identify the key environmental variables affect-
ing the distribution of the epidemic in Beijing, Shenyang, Dalian, and Shijiazhuang has also demonstrated the 
efficiency of the model55, providing valuable insights for targeted intervention strategies. However, these studies 
have thus far only focused on a few cities with severe epidemics and have not been comprehensively analyzed. 
Coro et al. used the MaxEnt model to simulate the global distribution of COVID-19. However, as the study only 
conducted modeling at the global level, there are significant irrationalities in the evaluation criteria, and the 
results cannot fully reveal the ecological niche requirements of the novel coronavirus56.

Therefore, the MaxEnt model was utilized in this study to assess global COVID-19 data at various spatial 
scales, which could accurately determine the spatial distribution and main influencing factors of potential infec-
tion risk areas at a fine scale of 1 km × 1 km, especially in regions where reporting may be incomplete or unreli-
able. In addition, this study adopted local scales for modeling in order to avoid data bias caused by excessive 
phenological differences in the study areas. In niche modeling, the regional scale prediction model offers greater 
advantages in terms of model accuracy57,58. Moreover, the modeling accuracy is ensured by calculating the CV 
value to process the urban point data with insufficient precision, which provides a method to plot the risk of 
COVID-19 associated with epidemiological and environmental factors. This approach holds a significant value 
not only for COVID-19 but also for the research of other infectious diseases.

This study mainly focuses on epidemiological research conducted before the Omicron variant emerged. 
The transmission speed of the Omicron variant is significantly faster than that of previous variants, and its 
immune evasion capabilities have been enhanced59. Firstly, studying the COVID-19 virus before the emergence 
of Omicron allows us to gain a more accurate understanding of the original virus’s characteristics and how these 
characteristics affect the spread and prevention of the pandemic. Secondly, epidemiological data from the early 
stages of the COVID-19 pandemic can better reflect the virus’s natural transmission patterns, which is crucial for 
understanding the mechanism of virus transmission and evaluating the effectiveness of prevention and control 
strategies. Successful early warning is crucial for containing the epidemic in its early stages before it escalates 
into a large-scale outbreak60.

Currently, the AUC method is considered the best criterion for assessing the success of presence/absence 
data models45. An AUC value above 0.8 indicates a good model, while an AUC close to 1 signifies excellent 
performance61. Sensitivity is defined as the proportion of test localities correctly predicted to be present (1–extrin-
sic omission rate). The quantity (1–specificity) equals the proportion of all map pixels predicted to have suitable 
conditions for the species62. An ideal model demonstrates a true positive rate (sensitivity) close to 1 and a false 
positive rate close to 0 (1–specificity). Most of our models exhibit a positive rate close to 1, indicating high accu-
racy. This demonstrates the accuracy and reliability of the modeling results. Additionally, a VIF value below 10 
indicates low and acceptable multicollinearity63. This signifies that the MaxEnt model, having achieved a high 
level of performance, is suitable for simulating COVID-19 risk areas globally, thus enabling early forecasting of 
potential infection risks.

In our study, among all 31 SDM models, 25 models were significantly influenced by population density. The 
results indicate that population density emerged as the most influential variable that affects the distribution of 
SARS-CoV-2 (Fig. 2b), aligning with other studies that highlight its significance in the spread of SARS-CoV-2 
using the MaxEnt model54. Numerous reports on the distribution of COVID-19 by other methodological inves-
tigations consistently validate our research findings, emphasizing the coherence and reliability of our study 
in this particular context64–69. As a respiratory virus, SARS-CoV-2 is mainly transmitted through respiratory 
droplets; therefore, population density plays an important role in the spread of COVID-1970. It is more difficult 
to maintain a safe distance between people in places with high population density, which increases the possibil-
ity of virus transmission70. The interconnectedness of cities worldwide and their intricate ecosystems facilitate 
the transmission of the virus among individuals, while the complexities stemming from urbanization and social 
cohesion exacerbate efforts to control the global pandemic71. Transmission was more severe in densely populated 



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11728  | https://doi.org/10.1038/s41598-024-62300-y

www.nature.com/scientificreports/

communities, fostering the spread of SARS-CoV-2 to varying degrees72,73. Identifying crowded places in time 
(local residents or densely populated floating population) can serve as one of the key measures to cut off the 
transmission74. A research suggests that total import and export of provinces has a high association with con-
firmed cases over time37. International trade emerged as a comprehensive indicator encompassing population 
density, human mobility, and economic dynamism, thus highlighting the significance of demographic factors75.

The model showed meteorological factors can also be considered an influencing factor for the COVID-19 
transmission of pathogens. Our results align with recent worldwide studies on the effect of climate on the 
spread of the COVID-19, which have shown that temperature and humidity were not crucial factors in the 
COVID-19 transmission76. There was a nonlinear relationship between ambient temperature and morbidity. 
We found that the threshold was around 10–25 °C, which is similar to other global studies70,77. Recognizing a 
specific temperature threshold can serve as a triggering factor for early warning of COVID-1978. Meteorologi-
cal factors can affect the transmission of the virus in two different ways, such as from an epidemiological and 
behavioral perspective. The viability of infectious viruses depends on environmental factors such as temperature 
and humidity79,80, with high temperatures damaging the virus’s lipid envelope22,81. Higher temperatures severely 
impair the survival ability of the SARS coronavirus82. While low temperature and low humidity enhance the 
stability of droplet transmission in the nasal mucosa. In behavioral perspective, weather can alter levels of activity, 
social distance, and social gathering locations, thereby influencing the spread of the virus among individuals83. 
An increase in temperature range between 10 and 25 °C corresponded to a higher probability of SARS-CoV-2 
transmission. However, a significant increase in temperature above 25 °C reduced its probability. That may be 
due to the fact that moderate temperatures increase human activity. Additionally, considering that the trans-
mission of coronavirus was similar to influenza, influenza virus was more transmissible at lower temperatures 
because cold weather can weaken the host’s immune system, thereby increasing infection susceptibility. There 
is no conclusive evidence indicating that the number of COVID-19 cases decreases as the weather warms up84, 
which offers valuable insights for policymakers and the general public. Lower temperatures enhance the stabil-
ity of the viral lipid envelope, thereby extending the survival and transmission capabilities of SARS-CoV-277. 
Additionally, our research revealed a negative correlation between temperature and the probability of COVID-19 
transmission in hot regions. This may be due to the fact that people in hot regions tend to reduce their outdoor 
activities due to unfavorable climatic conditions. In our study, the importance of relative humidity ranks last 
among all meteorological variables, indicating that relative humidity may be a secondary determinant of local 
transmission of COVID-19. Similar findings have also been concluded in epidemiological studies70. The results 
show that in continental areas, the impact of relative humidity on the spread of COVID-19 exhibits a "U" shape, 
which is consistent with other studies70. In island countries such as Japan and the Philippines, there is a positive 
correlation between relative humidity and the spread of COVID-19. Some studies have found that relatively 
high humidity environments can reduce individuals’ cognitive abilities, making it difficult for them to think 
clearly and reducing their alertness85. We hypothesized that this could affect people’s prevention efforts against 
COVID-19. Therefore, the formulation of epidemic prevention and control measures should take into account 
the actual conditions of each region.

Several recent studies argue that land cover may be a critical factor in the COVID-19 pandemic41,86. Max-
Ent results indicated that land cover, in particular, significantly impacts the spread of COVID-19 (Fig. 2b). 
The results indicated that when the land use type is urban, the probability of COVID-19 outbreak is higher 
as depicted in Figure S3c and Figure S4d. Urban areas have higher human mobility, thus resulting in a higher 
population density87. Land cover played a synergetic role in affecting human populations and the spread of ter-
restrial species88–90. More and more people are living or migrating in densely populated residential, commercial, 
and administrative areas, which increases the likelihood of contracting the coronavirus38. An increase in natural 
land cover in living environments might not directly prevent the spread of COVID-19, but it improves public 
health status. In other words, with more natural land cover, people may have fewer clinical factors associated 
with a high risk of death from being infected by COVID-1991. The study indicates that natural land cover could 
reduce COVID-19 prevalence and mortality in both the long and short terms41.

This study demonstrated that the effect of altitude on mortality in COVID-19 exhibited an opposite result, 
which is consistent with the findings of other studies43,73,92. Several possible explanations have been proposed 
for the protective effect of altitude. First, in high-altitude environments, chronic hypoxia significantly reduces 
the expression of ACE2 in pulmonary arterial smooth muscle cells, thus decreasing the risk of COVID-19 
infection93,94. Second, it is also possible that the levels of hypoxia encountered may optimize cellular oxygena-
tion, antioxidant systems and mitochondrial performance at the alveolar level by populations in higher altitudes 
with the potential to resist SARS-CoV-2 related complications95. Third, studies have shown that due to the lower 
density of air and greater distance between molecules at high-altitude, which may reduce the size of the air-
borne virus inoculum and the probability of dissemination between people96. Finally, Solar radiation is typically 
stronger in high-altitude areas than in low-altitude regions. The model showed an increase in solar radiation 
within a certain range leads to a significant decrease in the daily number of cases, consistent with laboratory 
studies showing that UV light can deactivate viruses in the air and on surfaces97. Our findings are reinforced 
by multiple studies70,98. Excessive solar radiation, however, can limit potential human activities97. Additionally, 
a meta-analysis showed that 41% of COVID-19 patients suffered from vitamin D deficiency and 42% had an 
insufficient vitamin D level98. The regular exposure to sunlight can facilitate the production of vitamin D, thereby 
strengthening human immune system and resilience against viral infections70.

This study introduces a multi-factor risk prediction system and emphasizes the important role of differ-
ent variables in disease transmission for global health strategies. This finding enhances our understanding of 
COVID-19 transmission dynamics, emphasizing the significant influence of demographic, geographical, and 
environmental factors. The findings have implications for public health strategies and emphasize the need for 
comprehensive, localized modeling to effectively address the global challenges posed by infectious diseases like 
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COVID-19. Furthermore, understanding the reasons and influencing factors behind the rapid spread of the 
disease and dividing risk distribution areas may identify the key areas for disease prevention and control. We 
should develop prevention and control plans that can be implemented scientifically and effectively based on the 
principles of epidemic transmission, ensuring the main aspects of both prevention and control. Prompt and 
efficient execution of these tasks can lead to significant savings in manpower and material resources. Overall, 
the MaxEnt model can be used as an early prediction tool to identify the risk distribution range of COVID-19, 
especially hotspots, high-risk areas, and transmission areas, and potential infection risk areas for COVID-19 at 
a fine scale, considering factors such as population density, meteorological factors, altitude, solar radiation, and 
land cover. Notably, population density emerges as the most significant predictor. Meteorological factors and 
land cover types significantly impact the spread of COVID-19, while solar radiation and altitude are negatively 
associated with the number of COVID-19 cases. Additionally, temperature has significant effects on the spread 
of COVID-19, while precipitation has the least impact.

Our study has three major limitations. First, in order to ensure the accuracy of the model, certain regions like 
Africa had to be excluded due to insufficient data reliability. Missingness in data may indicate potential problems 
in data pre-processing and may have influenced the results. Secondly, since many cities have implemented cor-
responding intervention measures, spatial analysis models can be introduced to identify potential COVID-19 
infection risk areas in different regions by combining prevention and control policies. By comparing these risk 
areas with the ones from this study, the effectiveness of prevention and control strategies can be further evaluated. 
Thirdly, we have only evaluated the influencing factors of early COVID-19, and long-term data can be included 
for further verification and comparison in the future.

Methods
Differentiation of prediction areas
We conducted an analysis of the epidemiological patterns of COVID-19 worldwide based on the COVID-19 
occurrence reports from every region, except the Africa region, due to the unavailability of official data. The 
WWF (World Wide Fund for Nature) global ecological zoning, established for natural conservation purposes 
(Eco-regions), was adopted as the basic framework for the global ecological geographic zoning knowledge base in 
this article99. The analysis was performed separately for six island countries, i.e., Japan, Indonesia, New Zealand, 
the United Kingdom, Ireland, and Cuba. The epidemiological characteristics of SARS-CoV-2 were accurately 
analyzed in the above-mentioned landscapes. Briefly, the regional study on the global continents was conducted 
according to the altitude, topography, and climate characteristics of each continent, combined with the global 
temperature zone100–104. Subsequently, MaxEnt was applied for each region separately (Fig. 1).

COVID‑19 occurrence records and processing
The early COVID-19-infected cases, spanning from January 1, 2020, to October 30, 2021, across 173 countries, 
were sourced from WHO (World Health Organization)10. To enhance the accuracy of the species distribution 
model (SDM), a meticulously screened process was applied to the COVID-19 point data. Excluding cases from 
countries or regions lacking transmission results. Furthermore, to address potential data shortages at the local 
level and to enhance the accuracy of our analysis, we refined the COVID-19 data necessary for the MaxEnt model 
and employed it for guiding our variable selection. We calculated the coefficient of variation values (CV) by 
utilizing 67 climate variables, which reflect the degree of dispersion between data points105. This method serves 
to quantify the data within the dataset. To conduct a high-precision analysis, a grid size of 1 km2 within each 
city was employed. The homology of the city was acceptable, given that the CV values of all variables were less 
than 15%105,106. The geometric center of the city was retained for subsequent MaxEnt modeling. We indicated 
the training and test datasets in Figure S1.

Processing of environmental variables
Environmental predictor variables, including climate, terrain, vegetation, and human impact, were generated for 
COVID-19 modeling. The current forecasting data was collected from the CHELSA database (Table 4)107,108. The 
incoming solar radiation (ISR) values were calculated at 30-min intervals and aggregated per growing season. 
The seasonal category of each research area was integrated from official data from each country, survey reports, 
and the website of the global seasons division (https://​seaso​nsyear.​com/). All spatial data preprocessing and 
calculations were done with standard operations in ArcGIS 10.2 and were projected in UTM-WGS-1984 with 
standard settings or resampling to 30 arc-seconds44,45,109.

COVID‑19 distribution modeling and evaluation
The MaxEnt model stands out as one of the best-performing specialty distribution modeling techniques for 
analyzing occurrence data. Consequently, we employed the MaxEnt model to predict the future distribution 
of COVID-19 infection using case occurrence data110. This model developed the ecological niche models by 
employing a machine-learning approach, combining COVID-19 case occurrence data with environmental vari-
ables. To explore the risk situation of SARS-CoV-2, the MaxEnt model was applied to the spatial distribution 
model building. The areas of interest were categorized into those below and above 1500 m asl, according to the 
elevation standard of the highland climate45,111. Spatial autocorrelation was minimized by filtering all recorded 
COVID-19 locations data using the SDM Toolbox v1.1c in ArcGIS 10.2109. Principal component analysis (PCA) 
and multicollinearity were addressed by excluding factors through variance inflation factor (VIF) analysis63,112. 
The filtered COVID-19 location and predictors served as input data for constructing the COVID-19 model using 
the MaxEnt algorithm. We divided the selected occurrence records into 70% training and 30% testing portions to 
build and validate the models based on 10 bootstrap replicates. For the remaining parameters, we maintained the 
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default settings in the pilot study. The final COVID-19 predicted risk maps for low-elevation and high-elevation 
areas were overlaid using the fuzzy overlay. The Jenks natural break optimization method was employed to clas-
sify the model output with smoothing and visualize high-risk areas107,113. The relative contribution of predictors 
for modeling was evaluated through the jackknife test and variable response curve. The accuracy of the model 
was assessed by the area under the receiver operating characteristic (ROC) curve114.

Data availability
The environmental predictor variables have been deposited in the CHELSA (http://​chelsa-​clima​te.​org/), the 
terrain predictor variables have been deposited in the Geospatial Data Cloud (http://​www.​gsclo​ud.​cn/), the 
population destiny was download in (https://​www.​world​pop.​org/), Land cover was download in ESA (https://​
maps.​elie.​ucl.​ac.​be/​CCI/​viewer/). Materials supporting the findings of this study are available from the corre-
sponding authors upon request.
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