Table 2 Multi-model classification—validation set results.

From: Using blood routine indicators to establish a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum

Model

AUC (SD)

Cut-off (SD)

Accuracy (SD)

Sensitivity (SD)

Specificity (SD)

Positive predictive value (SD)

Negative predictive value (SD)

F1 score (SD)

Kappa (SD)

XGBoost

0.808 (0.022)

0.863 (0.011)

0.817 (0.020)

0.680 (0.045)

0.865 (0.018)

0.836 (0.064)

0.814 (0.015)

0.748 (0.044)

0.437 (0.071)

Logistic

0.747 (0.041)

0.328 (0.031)

0.767 (0.027)

0.609 (0.075)

0.832 (0.043)

0.574 (0.055)

0.844 (0.018)

0.586 (0.036)

0.410 (0.048)

LightGBM

0.818 (0.022)

0.876 (0.009)

0.807 (0.022)

0.709 (0.070)

0.842 (0.017)

0.842 (0.071)

0.803 (0.017)

0.769 (0.064)

0.394 (0.081)

RandomForest

0.797 (0.022)

0.450 (0.032)

0.805 (0.018)

0.683 (0.057)

0.827 (0.030)

0.680 (0.050)

0.838 (0.009)

0.681 (0.052)

0.463 (0.040)

SVM

0.732 (0.047)

0.273 (0.014)

0.713 (0.036)

0.620 (0.077)

0.792 (0.049)

0.475 (0.050)

0.833 (0.021)

0.537 (0.060)

0.321 (0.071)

KNN

0.690 (0.030)

0.400 (0.000)

0.776 (0.013)

0.474 (0.135)

0.840 (0.081)

0.662 (0.046)

0.795 (0.010)

0.542 (0.103)

0.324 (0.044)