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A python based algorithmic 
approach to optimize sulfonamide 
drugs via mathematical modeling
Wakeel Ahmed 1,2, Kashif Ali 2, Shahid Zaman 1 & Fekadu Tesgera Agama 3*

This article explores the structural properties of eleven distinct chemical graphs that represent 
sulfonamide drugs using topological indices by developing python algorithm. To find significant 
relationships between the topological characteristics of these networks and the characteristics 
of the associated sulfonamide drugs. We use quantitative structure-property relationship (QSPR) 
approaches. In order to model and forecast these correlations and provide insights into the structure-
activity relationships that are essential for drug design and optimization, linear regression is a 
vital tool. A thorough framework for comprehending the molecular characteristics and behavior of 
sulfonamide drugs is provided by the combination of topological indices, graph theory and statistical 
models which advances the field of pharmaceutical research and development.
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Sulfonamide drugs, which contain a sulfonamide functional group, have a significant medical history that dates 
back to the 1930s when the first synthetic antibacterial agent, Prontosil, was discovered1. Since then, they have 
been widely used for their antibacterial qualities, especially in fighting bacterial infections. In addition to their 
antibacterial properties, sulfonamide drugs also demonstrate effectiveness against specific protozoal infections, 
making them highly flexible in the treatment of infectious diseases.Sulfonamide drugs have become a vital class 
of substances with a wide range of therapeutic uses in the field of pharmaceutical research2. Sulfonamide’s drugs 
are also commonly used for the treatment of urinary tract infections, respiratory tract infections, and bacterial 
meningitis3. They function by limiting the production of folic acid in bacteria, therefore impeding their growth 
and reproduction. Sulfonamide medications are additionally employed for the treatment of toxoplasmosis and 
malaria4. Sulfonamide’s distinct chemical structure makes them a perfect candidate for optimization in drug 
development due to their effectiveness against a variety of medical conditions5. Customized features of sulfona-
mide drugs that enhance pharmacological effects require an understanding of their quantitative structure-activity 
relationship (QSAR)6,7. Degree-based Topological Indices are essential for understanding the complex relation-
ships among sulfonamide drugs . These indices, which assign numerical values depending on the connectiv-
ity of atoms inside the compound, provide a quantitative representation of the molecular structure8–11 . More 
specifically, a molecule’s topological characteristics are mostly determined by the degree or number of bonds 
that each atom provides12,13.

Degree-based topological indices that are used in this study presented in Table 1 , which show the spatial 
arrangement and connectivity of atoms, offer significant novel perspectives on the structural characteristics of 
sulfonamide drugs that affect their biological behavior14. The application of these indices is essential in com-
prehending the complicated relationships between structure and function, particularly with complex molecular 
structures15. This aids researchers in designing and refining Sulfonamide compounds in a rational way in order 
to optimize their pharmacological effects16. A QSPR analysis is based on the correlation between these indices 
and the biological activity of sulfonamide drugs. Utilizing mathematical techniques like linear regression makes 
it possible to systematically examine the structure-activity landscape and identify patterns that inform the opti-
mization of potential sulfonamide drugs candidates. Several researchers have recently made contributions in 
this domain17–20.

A Python program has been developed with the goal of obtaining a thorough understanding and practical 
application of these relationships. This application streamlines the QSPR analysis process by facilitating the 
application of mathematical models and the computation of topological indices. Scientists and researchers may 
quickly optimize sulfonamide medications, find hidden relationships and analyze massive data sets efficiently 
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by incorporating the Python application into their workflow. This integrated strategy which combines Python 
programming, degree-based topological indices, QSPR analysis and sulfonamide drug research, advances phar-
maceutical development and advances the continuous seek for novel and more effective therapeutic agents.

Methodology
We firstly convert chemical structures into molecular graphs and edge partitioning is performed, based on 
graph connectivity. Secondly, Degree-based topological indices were computed by analyzing the distribution 
of node degrees within the graph by developing python algorithm. For python program we import necessary 
library numpy then define different variables for edge-partition and lastly apply for-loop to compute indices. 
Furthermore we use SPSS software for Regression analysis to assess the connection between the computed indi-
ces and experimental characteristics. To evaluate the developed indices ability to predict molecular behavior, a 
comparison of actual and predicted values was made.

Results and discussion
Chemical graphs representing the molecular structures of sulfonamide drugs shown in Fig. 1 were used to start 
the QSPR analysis. A systematic representation of the complex connection patterns within each molecule was 
made possible by this change. The topological indices of these chemical graphs were determined by developing 
an edge-partitioning-based Python Algorithms. The degree-based topological characteristics that are essential 
for comprehending the structural subtleties affecting the pharmacological characteristics of sulfonamide drugs 
were successfully captured by this approach. Linear regression analysis was carried out using the Statistical Pack-
age for the Social Sciences (SPSS) to uncover the statistical correlations between the biological activity of the 
sulfonamide compounds and the computed topological indices. By identifying important links, this stage helped 
to clarify the essential topological aspects that underlie the biological effects that have been observed. Also, a 
Python algorithm is developed especially for the comparison section to guarantee the analysis’s resilience and 
dependability. This approach made it possible to thoroughly analyze and validate the linear regression findings, 
offering a rigorous assessment of the topological indices’ predictive power in clarifying the structure-activity 
relationship of sulfonamide drugs. polymers of sulfonamides. The topological indices for a group of sulfonamide 
drugs shown in Figs. 2, 3 and 4 have been determined using Algorithm-1 and Algorithm-2 presented in Table 2.

Table 1.   Different topological descriptors.
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Figure 1.   Molecular Graph of Meloxicam and Meticrane.
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Figure 2.   Molecular structure of Dabrafenib,Famotidine and Dorzolamide.

Figure 3.   Molecular structure of Sulfonamide Drugs.

Figure 4.   Molecular structure of Daranide, Metahydrin and Sulfadiazine.

Table 2.   The molecular descriptors for the candidate drugs.

Name of drug   M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  86  97  7.719  228  18.787  19.7976  490

Dorzolamide  104  125  7.9905  310  21.2002  22.9595  704

Meloxicam  226  153  10.2381  350  26.7589  29.1286  830

Sulphadoxine  107  128  7.8714  349  21.4299  23.3286  736

Meticrane  94  111  7.0714  282  19.0382  20.5119  618

Famotidine  94  99  8.6333  250  20.2951  20.7833  478

Dabrafenib  192  229  15.4381  538  40.5236  43.8619  1228

Diuril  91  102  7.2857  267  18.6588  19.631  544

Daranide  84  96  6.2381  260  16.5485  17.5286  540

Metahydrin  104  122  7.8714  310  21.0951  22.6619  674

Sulfapyridine  86  97  7.7190  228  18.787  19.7976  490
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Algorithm-2

Regression model
A linear equation in the form of Y = A+ BX demonstrates the relationship between the independent variables 
(X) and the dependent variable (Y) in linear regression. In this case, Y is the dependent variable’s predicted or 
estimated value, X is the independent variable, ’B’ denotes the regression line’s slope, and ’A’ is the y-intercept. 
’B’ and ’A’ values that minimize the difference between the expected and actual observed values are the ones 
that need to be found. As linear regression models enable researchers to investigate and measure the relation-
ships between different molecular parameters and the possible efficacy of treatment candidates, therefore linear 
regression models are crucial resources for molecular insights into anti-Alzheimer’s medications. Below we have 
computed sevral linear regression models with respect to TIs discussed in Table 2.

Regression models of M1(G)

Polarizability = 16.5920 + 0.1177 M1(G)

Complexity = 253.1917 + 2.1931 M1(G)

Boiling point = 562.5737 + 0.0892 M1(G)

Molecular weight = 205.7471 + 1.0540 M1(G)

Molecular volume = 110.2459 + 0.8195 M1(G)

Flash point = 294.0339 + 0.0539 M1(G)

Regression models of M2(G)
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Polarizability = 7.5184 + 0.1832 M2(G)

Complexity = 125.5086 + 3.0798 M2(G)

Boiling point = 510.5981 + 0.5039 M2(G)

Molecular weight = 113.6467 + 1.7289 M2(G)

Molecular volume = 31.4493 + 1.4024 M2(G)

Flash point = 262.5657 + 0.3051 M2(G)

Regression models of H(G)

Polarizability = 5.0573 + 2.9345 H(G)
Complexity = 125.4552 + 44.4959 H(G)
Boiling point = 496.9339 + 8.8771 H(G)
Molecular weight = 101.2243 + 26.4279 H(G)
Molecular volume = 24.4009 + 21.0829 H(G)
Flash point = 254.2942 + 5.3739 H(G)

Regression Models of F(G)

Polarizability = 5.6774 + 0.0798 F(G)
Complexity = 85.4367 + 1.3719 F(G)
Boiling point = 491.9821 + 0.2638 F(G)
Molecular weight = 88.2033 + 0.7798 F(G)
Molecular volume = 14.0497 + 0.6219 F(G)
Flash point = 251.3014 + 0.1597 F(G)

Regression models of SS(G)

Polarizability = 5.67009 + 1.1078 SS(G)
Complexity = 115.7992 + 3.2629 SS(G)
Boiling point = 500.7366 + 3.2629 SS(G)
Molecular weight = 101.4689 + 10.2152 SS(G)
Molecular volume = 23.5397 + 8.1969 SS(G)
Flash point = 256.5959 + 1.9753 SS(G)

Regression models of RezG2(G)

Polarizability = 6.6479 + 0.9945 RezG2(G)

Complexity = 127.9736 + 15.9940 RezG2(G)

Boiling point = 507.9909 + 2.7443 RezG2(G)

Molecular weight = 110.4326 + 9.1732 RezG2(G)

Molecular volume = 29.1663 + 7.4271 RezG2(G)

Flash point = 260.9856 + 1.6614 RezG2(G)

Regression models of RezG3(G)

Polarizability = 9.0849 + 0.0316 RezG3(G)

Complexity = 138.6683 + 0.5511 RezG3(G)

Boiling point = 517.5597 + 0.0829 RezG3(G)

Molecular weight=124.7707 + 0.3038 RezG3(G)

Molecular volume = 39.1387 + 0.2484 RezG3(G)

Flash point = 266.7802 + 0.0502 RezG3(G)

The physico-chemical properties listed in Table 3 serve as essential descriptors for the desired molecular 
properties. The development of QSPR model requires these characteristics. In this case, evaluating the depend-
ability and predictive capability of the QSPR model depends significantly on statistical measures like the cor-
relation coefficient (r), standard error (S.E. ), F-statistic, and p-value. Tables 4, 5, 6, 7, 8, 9, 10, and 11 provide an 
overview of these statistical measures that shed light on the strength and importance of the correlations between 
the topological indices and the reported physico-chemical properties. These statistical parameters guarantee a 
thorough assessment of the model’s performance, allowing scientists to determine how well the model predicts 
the desired molecular attributes using the topological indices that are specified.

The correlation coefficients between particular topological descriptors and physico-chemical parameters are 
shown in Table 4. Interestingly, Polarizability has a significant linear relationship with the SS(G) index, as demon-
strated by its high coefficient of 0.9803. The M2(G) index, which measures complexity, shows a strong association 
with a coefficient of 0.8722. Furthermore, Boiling point (B.P) has a 0.6811 correlation coefficient and significantly 
aligns with the M1(G) index. The RezG3 index and molecular weight (M.W) have a strong association (coefficient 
of 0.8809), highlighting the topological descriptor’s predictive ability. Furthermore, a good correlation between 
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Molar Volume (M.V) and the RezG2 index is indicated by a high coefficient of 0.9588, indicating a dependable 
link between the two variables. In Table 5, we have shown the statistical parameters employed in the QSPR 
model with respect to M2(G) . color redIn Fig. 5, we have shown the correlation coefficients with respect to TIs.

Table 3.   The properties of drugs related to their Physico-chemical characteristics.

Name of drug
Polarizability
   cm3 Complexity

  B.Po
C

   (760 mmHg) Molecular   weight Molecular   volume Flash   point

Sulfadiazine   25  327  512.6  250.28  167.3  263.8

Dorzolamide  29.9  534  575.8  324.4  211  302

Meloxicam  34.1  628  520.9  351.4  219.6  268.8

Sulphadoxine  30.1  420  522.8  310.33  215.3  270

Meticrane  25.6  485  549.1  275.3  188.1  285.9

Famotidine  31.3  469  662.4  337.5  183.6  354.4

Dabrafenib  50.5  817  653.7  519.6  359.9  349.2

Diuril  24.5  532  608.8  295.7  144  322

Daranide  24.3  452  590.5  305.2  171.2  310.9

Metahydrin  30.5  571  631.3  380.7  217.7  335.6

Sulfapyridine  25.9  331  473.5  249.29  174.1  240.2

Table 4.   Correlation coefficients of T.I with respect to different physical characteristics.

T.I Polarizability Complexity Boiling point Molecular weight Molar Volume Flash Point

M1(G)  0.7466  0.7532  0.6811  0.6644  0.6843  0.681

M2(G)  0.9587  0.8722  0.3173  0.8986  0.9656  0.3176

H(G)  0.9745  0.7997  0.3547  0.8718  0.9213  0.3551

F(G)  0.9350  0.8695  0.3718  0.9071  0.9584  0.37201

SS(G)  0.9803  0.8456  0.3475  0.8980  0.9546  0.3478

RezG2(G)  0.9756  0.8492  0.3239  0.8939  0.9588  0.3243

RezG3(G)  0.9228  0.8707  0.2914  0.8809  0.9542  0.2917

Table 5.   The statistical parameters employed in the QSPR model with respect to M1(G).

A    B   r   r2   S.E   F    P

Polarizability  16.5920   0.1177  0.7466  0.5574  5.2603  11.3342  0.008

Complexity  253.1917  2.1931  0.7532  0.5673  96.0935   11.8013 0.007

B.P  562.5737  0.0892  0.06811  0.0046  65.5516  0.0419  0.842

M.W  205.7471   1.0540  0.6644   0.4414  59.4897  7.1119  0.025

M.V  110.2459  0.8195  0.6843  0.4682  43.8155  7.9250  0.020

F.P  294.0339  0.0539  0.0681  0.0046  39.6459  0.0419  0.842

Table 6.   The statistical parameters employed in the QSPR model with respect to M2(G).

A    B   r   r2   S.E   F    P

Polarizability  7.5184  0.1832  0.9587  0.9191  2.2492  102.2225  0.000

Complexity  125.5086  3.07977  0.8722  0.7607  71.4645  28.6095 0.000

B.P  510.5981  0.5039  0.3173  0.1007  62.3089  1.0076  0.341

M.W  113.6467   1.7289  0.8986   0.8075  34.9190  37.7636  0.000

M.V  31.4493  1.4024  0.9656  0.9324  15.6204  124.1682  0.000

F.P  262.5657  0.3051  0.3176  0.1009  37.6808  1.0097  0.341
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Table 7.   The statistical parameters employed in the QSPR model with respect to H(G).

A    B   r   r2   S.E   F    P

Polarizability  5.0573  2.9345  0.9745  0.9496  1.7748  169.6371  0.000

Complexity  125.4552  44.4959  0.7997  0.6396  87.7064  15.9698 0.003

B.P  496.9339  8.8771  0.3547  0.1258  61.4309  1.29568  0.284

M.W  101.2243   26.4279  0.8718   0.7600  38.9939  28.5007  0.000

M.V  24.4009  21.0829  0.9213  0.8488  23.3656  50.5158  0.000

F.P  254.2942  5.3739  0.3551  0.1261  37.1488  1.2985  0.283

Table 8.   The statistical parameters employed in the QSPR model with respect to F(G).

A    B   r   r2   S.E   F    P

Polarizability  5.6774  0.0798  0.9350  0.8743  2.8037  62.5779  0.000

Complexity  85.4367  1.3719  0.8695  0.7561  72.1533  27.8948 0.000

B.P  491.9821  0.2638  0.3718  0.1382  60.9948  1.4434  0.260

M.W  88.2033   0.7798  0.9071   0.8228  33.5072  41.7875  0.000

M.V  14.0497  0.6219  0.9584  0.9186  17.1481  101.4976  0.000

F.P  251.3014  0.1597  0.37201  0.1384  36.8851  1.446  0.259

Table 9.   The statistical parameters employed in the QSPR model with respect to SS(G).

A    B   r   r2   S.E   F    P

Polarizability  5.67009  1.1078  0.9803  0.9611  1.5600  222.2048  0.000

Complexity  115.7992  17.6545  0.8456  0.7150  77.9856  22.5826 0.001

B.P  500.7366  3.2629  0.3475  0.1207  61.6097  1.2359  0.295

M.W  101.4689  10.2152  0.8980   0.8064  35.0221  37.4887  0.000

M.V  23.5397  8.1969  0.9546  0.9112  17.9057  92.3453  0.000

F.P  256.5959  1.9753  0.3478  0.1209  37.2571  1.2387  0.294

Table 10.   The statistical parameters employed in the QSPR model with respect to RezG2(G).

A    B   r   r2   S.E   F    P

Polarizability  6.6479  0.9945  0.9756  0.9518  1.7352  177.8857  0.000

Complexity  127.9736  15.9940  0.8492  0.7211  77.1488  77.1488 0.000

B.P  507.9909  2.7443  0.3239  0.1049  62.1605  1.0554  0.331

M.W  110.4326  9.1732  0.8939   0.7991  35.6809  35.7879  0.000

M.V  29.1663  7.4271  0.9588  0.9192  17.0778  102.4097  0.000

F.P  260.9856  1.6614  0.3243  0.1052  37.5907  1.0577  0.330

Table 11.   The statistical parameters employed in the QSPR model with respect to RezG3(G).

A    B   r   r2   S.E   F    P

Polarizability  9.0849  0.0316  0.9228  0.8518  3.0467  51.6164  0.000

Complexity  138.6683  0.5511  0.8707  0.7582  71.8395  28.2179 0.000

B.P  517.5597  0.0829  0.2914  0.0849  62.8520  0.8353  0.384

M.W  124.7707  0.3038  0.8809   0.7759  37.6748  31.1726  0.000

M.V  39.1387  0.2484  0.9542  0.9106  17.9687  91.6356  0.000

F.P  266.7802  0.0502  0.2917  0.0851  38.0099  0.8371  0.384
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Tables 12, 13, 14, 15, 16 and 17 show the computed values of boiling point , flash point, molar volume, molecu-
lar weight, complexity, and polarizability that were compared to their corresponding actual values in order to 
assess the effectiveness of regression models for predicting different physicochemical properties of sulfonamide 
drugs. In addition to providing insights into the models’ potential utility in forecasting the physicochemical fea-
tures of sulfonamide drugs and advancing drug development and study, this thorough evaluation is an essential 
step in demonstrating the models’ robustness and reliability. Also graphical comparison shown in Fig. 6.

Table 12.   Comparison of actual and computed values of Polarizability from regression models of TIs.

 Polar M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  25  26.7142  25.2888  27.7087  23.8718  26.4823  26.3366  24.5689

Dorzolamide  29.9  28.8328  30.4184  28.5054  30.4154  29.1557 29.4811  31.3313

Meloxicam  34.1  43.1922  35.5480  35.1010  33.6074  35.3136  35.6163  35.3129

Sulphadoxine  30.1  29.1859  30.9680  28.1559  33.5276  29.4101  29.8482  32.3425

Meticrane  25.6  27.6558  27.8536  25.8083  28.1810  26.7606  27.0470  28.6137

Famotidine  31.3  27.6558  25.6552  30.3917  25.6274  28.1530  27.3169  24.1897

Debrafenib  50.5  39.1904  49.4712  50.3604  48.6098  50.5621  50.2686  47.8897

Diurill  24.5  27.3027  26.2048  26.4372  26.9840  26.3403  26.1709  26.2753

Daranide  24.3  26.4788  25.1056  23.3630  26.4254  24.0025  24.0801  26.1489

Metahydrine  30.5  28.8328  29.8688  78.1559  30.4154  29.0392  29.1852  30.3833

Sulfapyridine  25.9  26.7142  25.2888  27.7087  23.8718  26.4823  26.3366  24.5689

Table 13.   Comparison of actual and computed values of Complexity from regression models of TIs.

 Complex M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  327  441.7983  424.2492  468.9191  398.2299  177.0993  444.6164  408.7073

Dorzolamide  534  481.2741  510.4836  480.9997  510.7257  184.9733  495.1878  526.6427

Meloxicam  628  748.8323  596.7180  581.0087  565.6017  203.1108  593.8564  596.081

Sulphadoxine  420  487.8534  519.7230  475.7002  564.2298  185.7228  501.0912  544.273

Meticrane  485  459.3431  467.3664  440.1035  472.3125  177.9189  456.0409  479.248

Famotidine  469  459.3431  430.4088  509.6017  428.4117  182.0201  460.3817  402.094

Debrafenib  817  674.2669  830.7828  812.3874  823.5189  248.0237  829.5008  815.419

Diurill  532  452.7638  439.6482  449.6390  451.7340  176.6810  441.9518  438.466

Daranide  452  437.4121  421.1694  403.0251  395.4861  169.7453  408.3260  436.2623

Metahydrine  571  481.2741  501.2442  480.9997  510.7257  184.6304  490.4280  510.1097

Sulfapyridine  331  441.7983  424.2492  468.9191  398.2299  177.0993  444.6169  408.707

Figure 5.   Correlation coefficients with respect to TIs disscused in Table 2.
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Conclusion
A Python algorithm is developed to compute degree-based topological indices, which were then used to examine 
eleven different sulfonamide drugs. This approach has yielded important insights into the chemical features of 
these drugs. After that, a regression model isused to determine the characteristics of these drugs, and the results 
showed that Polarizability, Complexity, Molecular Weight, and Molar Volume were significant factors. These 
results imply that the behavior and characteristics of sulfonamide drugs are substantially influenced by these 
particular molecular properties. Unexpectedly, the analysis also indicates that the regression model determined 
that Boiling Point and Flash Point were not significant indicators. This suggests that both of these factors may 

Table 14.   Comparison of actual and computed values of Boiling Point from regression models of TIs.

 B.P M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  512.6  570.2449  559.4764  565.4562  552.1285  562.0367  562.3215  558.1807

Dorzolamide  575.8  571.8505  573.5856  567.8664  573.7601  569.9107  570.9987  575.9213

Meloxicam  520.9  582.7329  587.6948  587.8185  584.3121  588.0482  587.9285  586.3667

Sulphadoxine  522.8  572.1181  575.0973  566.8091  584.0483  570.6602  572.0116  578.5741

Meticrane  549.1  570.9585  560.5310  559.7074  556.3737  562.8563  564.2817  568.7919

Famotidine  662.4  570.9585  560.4842  573.5726  557.9321  566.9575  565.0265  557.1859

Debrafenib  653.7  579.7001  625.9912  633.9795  633.9065  632.9611  628.3611  619.3609

Diurill  608.8  570.6909  561.9959  561.6098  562.4167  561.6184  561.8643  562.6573

Daranide  590.5  570.0665  558.9725  552.3101  560.5701  554.7327  566.0946  562.3257

Metahydrine  631.3  571.8505  572.0739  566.8091  573.7601  569.5678  570.1820  573.4343

Sulfapyridine  473.5  570.2449  559.4764  565.4562  552.1285  562.0367  562.3215  558.1807

Table 15.   Comparison of actual and computed values of Molecular Weight from regression models of TIs.

 M.W M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  250.28  296.3911  281.3500  305.2213  265.9977  293.3819  292.0399  273.6327

Dorzolamide  324.4  315.3621  329.7592  312.3964  329.9413  318.0332  321.0447  338.6459

Meloxicam  351.4  443.9511  378.1684  371.7958  361.1333  374.8164  377.6351  376.9247

Sulphadoxine  310.33  318.5251  334.9459  309.2489  360.3535  320.3796  324.4305  348.3675

Meticrane  275.3  304.8231  305.5546  288.1066  308.1069  295.9479  298.5924  312.5191

Famotidine  337.5  304.8231  284.8078  329.3843  283.1533  308.7874  301.0820  269.9871

Debrafenib  519.6  408.1151  509.5648  509.2209  507.7357  515.4256  482.1637  497.8371

Diurill  295.7  301.6611  289.9945  293.7701  296.4099  292.0723  281.5935  290.0379

Daranide  305.2  294.2831  279.6211  266.0842  290.9513  270.5151  271.2260  288.8227

Metahydrine  380.7  315.3631  324.5725  309.2489  329.9413  316.9596  318.3147  329.5319

Sulfapyridine  249.29  296.3911  281.3500  305.2213  265.9977  293.3819  292.0399  273.6327

Table 16.   Comparison of actual and computed values of Molecular Volume from regression models of TIs.

 M.V M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  167.3  180.7229  167.4821  187.1398  155.8429  177.5349  176.2051  160.8547

Dorzolamide  211  195.4739  206.7493  192.8638  206.8387  197.3156  199.6888  214.0123

Meloxicam  219.6  295.4529  246.0165  240.2497  231.7147  242.8797  245.5073  245.3107

Sulphadoxine  215.3  197.9324  210.9565  190.3528  231.0928  199.1984  202.4301  221.9611

Meticrane  188.1  187.2789  187.1157  173.4865  189.4255  179.5939  181.5102  192.6494

Famotidine  183.6  187.2789  170.2869  206.4159  169.5247  189.8966  183.5259  157.8739

Debrafenib  359.9  267.5899  352.5989  349.8808  348.6319  355.7076  354.9330  344.1739

Diurill  144  184.8204  174.4941  178.0046  180.0970  176.4840  174.9677  174.2683

Daranide  171.2  179.0839  166.0797  155.9181  175.7437  159.1861  159.3530  173.2747

Metahydrine  217.7  195.4739  202.5421  190.3528  206.8387  196.4541  197.4785  206.5603

Sulfapyridine  174.1  180.7229  167.4821  187.1398  155.8429  177.5349  176.2051  160.8547
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Table 17.   Comparison of actual and computed values of Flash Point from regression models of TIs.

 F.P M1(G)   M2(G)   H(G)   F(G)   SS(G)   RezG2(G)   RezG3(G)

Sulfadiazine  263.8  298.6693  292.1604  295.7753  287.7130  293.7059  293.8773  291.3782

Dorzolamide  302  299.6395  300.7032  297.2343  300.8084  298.4727  299.1305  302.1210

Meloxicam  268.8  306.2153  309.2460  309.3127  307.1964  309.4528  309.3799  308.4462

Sulphadoxine  270  299.8012  301.6185  296.5943  307.0367  298.9264  299.7437  303.7274

Meticrane  285.9  299.1005  296.4318  292.2952  296.3368  294.2021  295.0641  297.8038

Famotidine  354.4  299.1005  292.7706  300.6887  291.2264  296.6848  295.5150  290.7758

Debrafenib  349.2  304.3827  332.4336  337.2570  337.2200  336.6422  333.8578  328.4258

Diurill  322  298.9388  293.6859  293.4468  293.9413  293.4526  293.6005  294.0890

Daranide  310.9  298.5615  291.8553  287.8171  292.8234  289.2842  290.1076  293.8882

Metahydrine  335.6  299.6395  299.7879  296.5943  300.8084  298.2651  298.6361  300.6150

Sulfapyridine  240.2  298.6693  292.1604  295.7753  287.7130  293.7059  293.8773  291.3782

Figure 6.   Graphical comparison with actual and predicted values.
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have a limited impact on the observed variances in the sulfonamide drugs under consideration within the frame-
work of this research. Our study improves research processes’ transparency and reproducibility by employing a 
Python software. Since the software code is publicly available, other researchers can independently validate our 
findings and repeat our methods. This openness encourages scientific integrity and makes it easier for research-
ers to work together.

Data availability
All data generated or analysed during this study are included in this published article.
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