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OPEN A python based algorithmic

approach to optimize sulfonamide
drugs via mathematical modeling

Wakeel Ahmed??, Kashif Ali?, Shahid Zaman® & Fekadu Tesgera Agama3**

This article explores the structural properties of eleven distinct chemical graphs that represent
sulfonamide drugs using topological indices by developing python algorithm. To find significant
relationships between the topological characteristics of these networks and the characteristics

of the associated sulfonamide drugs. We use quantitative structure-property relationship (QSPR)
approaches. In order to model and forecast these correlations and provide insights into the structure-
activity relationships that are essential for drug design and optimization, linear regressioniis a

vital tool. A thorough framework for comprehending the molecular characteristics and behavior of
sulfonamide drugs is provided by the combination of topological indices, graph theory and statistical
models which advances the field of pharmaceutical research and development.
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Sulfonamide drugs, which contain a sulfonamide functional group, have a significant medical history that dates
back to the 1930s when the first synthetic antibacterial agent, Prontosil, was discovered'. Since then, they have
been widely used for their antibacterial qualities, especially in fighting bacterial infections. In addition to their
antibacterial properties, sulfonamide drugs also demonstrate effectiveness against specific protozoal infections,
making them highly flexible in the treatment of infectious diseases.Sulfonamide drugs have become a vital class
of substances with a wide range of therapeutic uses in the field of pharmaceutical research?. Sulfonamide’s drugs
are also commonly used for the treatment of urinary tract infections, respiratory tract infections, and bacterial
meningitis®. They function by limiting the production of folic acid in bacteria, therefore impeding their growth
and reproduction. Sulfonamide medications are additionally employed for the treatment of toxoplasmosis and
malaria?. Sulfonamide’s distinct chemical structure makes them a perfect candidate for optimization in drug
development due to their effectiveness against a variety of medical conditions®. Customized features of sulfona-
mide drugs that enhance pharmacological effects require an understanding of their quantitative structure-activity
relationship (QSAR)®’. Degree-based Topological Indices are essential for understanding the complex relation-
ships among sulfonamide drugs . These indices, which assign numerical values depending on the connectiv-
ity of atoms inside the compound, provide a quantitative representation of the molecular structure®-!! . More
specifically, a molecule’s topological characteristics are mostly determined by the degree or number of bonds
that each atom provides'>'*.

Degree-based topological indices that are used in this study presented in Table 1, which show the spatial
arrangement and connectivity of atoms, offer significant novel perspectives on the structural characteristics of
sulfonamide drugs that affect their biological behavior'*. The application of these indices is essential in com-
prehending the complicated relationships between structure and function, particularly with complex molecular
structures'. This aids researchers in designing and refining Sulfonamide compounds in a rational way in order
to optimize their pharmacological effects'®. A QSPR analysis is based on the correlation between these indices
and the biological activity of sulfonamide drugs. Utilizing mathematical techniques like linear regression makes
it possible to systematically examine the structure-activity landscape and identify patterns that inform the opti-
mization of potential sulfonamide drugs candidates. Several researchers have recently made contributions in
this domain'”-°,

A Python program has been developed with the goal of obtaining a thorough understanding and practical
application of these relationships. This application streamlines the QSPR analysis process by facilitating the
application of mathematical models and the computation of topological indices. Scientists and researchers may
quickly optimize sulfonamide medications, find hidden relationships and analyze massive data sets efficiently
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Table 1. Different topological descriptors.

by incorporating the Python application into their workflow. This integrated strategy which combines Python
programming, degree-based topological indices, QSPR analysis and sulfonamide drug research, advances phar-
maceutical development and advances the continuous seek for novel and more effective therapeutic agents.

Methodology

We firstly convert chemical structures into molecular graphs and edge partitioning is performed, based on
graph connectivity. Secondly, Degree-based topological indices were computed by analyzing the distribution
of node degrees within the graph by developing python algorithm. For python program we import necessary
library numpy then define different variables for edge-partition and lastly apply for-loop to compute indices.
Furthermore we use SPSS software for Regression analysis to assess the connection between the computed indi-
ces and experimental characteristics. To evaluate the developed indices ability to predict molecular behavior, a
comparison of actual and predicted values was made.

Results and discussion

Chemical graphs representing the molecular structures of sulfonamide drugs shown in Fig. 1 were used to start
the QSPR analysis. A systematic representation of the complex connection patterns within each molecule was
made possible by this change. The topological indices of these chemical graphs were determined by developing
an edge-partitioning-based Python Algorithms. The degree-based topological characteristics that are essential
for comprehending the structural subtleties affecting the pharmacological characteristics of sulfonamide drugs
were successfully captured by this approach. Linear regression analysis was carried out using the Statistical Pack-
age for the Social Sciences (SPSS) to uncover the statistical correlations between the biological activity of the
sulfonamide compounds and the computed topological indices. By identifying important links, this stage helped
to clarify the essential topological aspects that underlie the biological effects that have been observed. Also, a
Python algorithm is developed especially for the comparison section to guarantee the analysis’s resilience and
dependability. This approach made it possible to thoroughly analyze and validate the linear regression findings,
offering a rigorous assessment of the topological indices’ predictive power in clarifying the structure-activity
relationship of sulfonamide drugs. polymers of sulfonamides. The topological indices for a group of sulfonamide
drugs shown in Figs. 2, 3 and 4 have been determined using Algorithm-1 and Algorithm-2 presented in Table 2.

Meloxicam Meticrane

Figure 1. Molecular Graph of Meloxicam and Meticrane.
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Algorithm-1

# Algorithm for computing topological indicies for Sulfadiazine
import numpy as np

sm =7
X = np.array([1,
Y = np.array([3,
Z = np.array([1,
A1 = np.zeros(m)
A2 = np.zeros(m)
A3 = np.zeros(m)

; Ad= np.zeros (m)
A5 = np.zeros(m)
A6 = np.zeros(m)
A7 = np.zeros(m)

for n in range (m)
A1[n] = Z[nl
A2[n] = Z[n]
A3[n] = Z[n]
A4[n] = Z[n]
A5[n] = Z[n]
A6[n] = Z[nl
A7[n] = Z[nl

A1l = np.sum (A1)
A2 = np.sum(A2)
A3 = np.sum(A3)
A4 = np.sum(A4)
A5 = np.sum(A5)
A6 = np.sum(A6)

3 A7 = np.sum(A7)

5 print ("A1 =", A1)
; print ("A2 =", A2)

print ("A3 =", A3)
print ("A4 =", A4)
print ("A5 =", AbB)
print ("A6 =", A6)
print ("A7 =",A7)

3, 2, 2,3,4,4])

2, 2, 3,4,1,2])

3, 6, 4,1,2,11)

* (X[n] + Y[nl)

* (X[n] * Y[nl)

* (2 / (X[n] + Y[nl))

* (X[nl**x2 + Y[n]lx**x2)

* (np.sqrt(X[n] * Y[n] / (X[n]l + Y[nl)))
* (X[n] * Y[n] / (X[n] + Y[nl))

* (X[n] * Y[n] * (X[n] + Y[nl))
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Figure 2. Molecular structure of Dabrafenib,Famotidine and Dorzolamide.
H
N o H
OH 0O JN’\ N CHs Meo—¢ N 5NN | SI:CEN\”
Syt s ok Y EQNH /©/ oS : s
H 2 7 © - 7] H,N o> )
,/S\:N\CH3 o) IS (o] 'O' 2 NH; ©O O
o0

5) Meticrane 7) Sulfapyridine

(Diuretic agent)

6) Sulphadoxine

4) Meloxicam
(Antimalarial drug)

(Anti-inflammatory agent)

Figure 3. Molecular structure of Sulfonamide Drugs.
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Figure 4. Molecular structure of Daranide, Metahydrin and Sulfadiazine.

Name of drug M (G) | Mx(G) | H(G) F(G) $S(G) RezG2(G) | RezG3(G)
Sulfadiazine 86 97 7.719 228 18.787 19.7976 490
Dorzolamide 104 125 7.9905 310 21.2002 | 22.9595 704
Meloxicam 226 153 10.2381 | 350 26.7589 | 29.1286 830
Sulphadoxine 107 128 7.8714 349 21.4299 | 23.3286 736
Meticrane 94 111 7.0714 282 19.0382 | 20.5119 618
Famotidine 94 99 8.6333 250 20.2951 | 20.7833 478
Dabrafenib 192 229 15.4381 | 538 40.5236 | 43.8619 1228
Diuril 91 102 7.2857 267 18.6588 | 19.631 544
Daranide 84 96 6.2381 260 16.5485 | 17.5286 540
Metahydrin 104 122 7.8714 310 21.0951 | 22.6619 674
Sulfapyridine 86 97 7.7190 228 18.787 19.7976 490

Table 2. The molecular descriptors for the candidate drugs.

(Anti-infective agent)

8) Diuril
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Algorithm-2

1
2 # Algorithm for computing topological indicies for Dorzolamide
3 import numpy as np

m = 8
¢ X = np.array([1, 2, 2, 3,3,3,4,3])
7Y = np.array([2, 2, 3, 2,4,3,1,1])
s Z = np.array([1, 1, 4, 3,3,2,5,1])
10 Al = np.zeros(m)
11 A2 = np.zeros(m)
12 A3 = np.zeros(m)
13 A4= np.zeros(m)
14+ A5 = np.zeros(m)
15 A6 = np.zeros(m)
16 A7 = np.zeros (m)

s for n in range(m):
19 A1[n] = Z[n]
20 A2 [n] = Z[Il]
1 A3[n] = ZI[n]
2 A4[n] = ZI[n]

A5[n] = Z[n]
| A6[n] = Z[n]
25 A7 [n] = Z[n]

(X[n] + Y[nl)

(X[n] * Y[nl)

(2 / (X[n] + Y[nl))

(X[n]**2 + Y[n]*%x2)

(np.sqrt(X[n] * Y[n] / (X[n] + Y[n])))
(X[n] * Y[n] / (X[n] + Y[nl))

(X[n] * Y[n] * (X[n] + Y[nl))

LR R LR R

27 Al = np.sum (A1)
2s A2 = np.sum(A2)
20 A3 = np.sum(A3)
30 A4 = np.sum(A4)
;1 A5 = np.sum(A5)
32 A6 = np.sum(A6)
i3 A7 = np.sum (A7)

print ("A1 =", A1)
print ("A2 =", A2)
print ("A3 =", A3)
print ("A4 =", A4)
print ("A5 =", A5)
print ("A6 =", A6)
11 print ("A7=",AT7)

¥4 8

1(

Regression model

A linear equation in the form of Y = A + BX demonstrates the relationship between the independent variables
(X) and the dependent variable (Y) in linear regression. In this case, Y is the dependent variable’s predicted or
estimated value, X is the independent variable, ’B’ denotes the regression line’s slope, and A’ is the y-intercept.
’B’ and ’A’ values that minimize the difference between the expected and actual observed values are the ones
that need to be found. As linear regression models enable researchers to investigate and measure the relation-
ships between different molecular parameters and the possible efficacy of treatment candidates, therefore linear
regression models are crucial resources for molecular insights into anti-Alzheimer’s medications. Below we have
computed sevral linear regression models with respect to TIs discussed in Table 2.

Regression models of M;(G)

Polarizability = 16.5920 + 0.1177 M, (G)
Complexity = 253.1917 + 2.1931 M; (G)
Boiling point = 562.5737 + 0.0892 M; (G)
Molecular weight = 205.7471 + 1.0540 M, (G)
Molecular volume = 110.2459 + 0.8195 M;(G)
Flash point = 294.0339 + 0.0539 M, (G)

Regression models of M;(G)
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Polarizability = 7.5184 + 0.1832 M>(G)
Complexity = 125.5086 + 3.0798 M (G)
Boiling point = 510.5981 + 0.5039 M, (G)
Molecular weight = 113.6467 + 1.7289 M (G)
Molecular volume = 31.4493 + 1.4024 M, (G)
Flash point = 262.5657 + 0.3051 M>(G)

Regression models of H(G)

Polarizability = 5.0573 + 2.9345 H(G)
Complexity = 125.4552 + 44.4959 H(G)
Boiling point = 496.9339 + 8.8771 H(G)
Molecular weight = 101.2243 + 26.4279 H(G)
Molecular volume = 24.4009 + 21.0829 H(G)
Flash point = 254.2942 + 5.3739 H(G)

Regression Models of F(G)

Polarizability = 5.6774 + 0.0798 F(G)
Complexity = 85.4367 + 1.3719 F(G)
Boiling point = 491.9821 + 0.2638 F(G)
Molecular weight = 88.2033 + 0.7798 F(G)
Molecular volume = 14.0497 + 0.6219 F(G)
Flash point = 251.3014 + 0.1597 F(G)

Regression models of SS(G)

Polarizability = 5.67009 + 1.1078 SS(G)
Complexity = 115.7992 + 3.2629 SS(G)
Boiling point = 500.7366 + 3.2629 SS(G)
Molecular weight = 101.4689 + 10.2152 SS(G)
Molecular volume = 23.5397 + 8.1969 SS(G)
Flash point = 256.5959 + 1.9753 $S(G)

Regression models of RezG»(G)

Polarizability = 6.6479 + 0.9945 RezG»(G)
Complexity = 127.9736 + 15.9940 RezG»(G)
Boiling point = 507.9909 + 2.7443 RezG»(G)
Molecular weight = 110.4326 + 9.1732 RezG,(G)
Molecular volume = 29.1663 + 7.4271 RezG,(G)
Flash point = 260.9856 + 1.6614 RezG,(G)

Regression models of RezG3(G)

Polarizability = 9.0849 + 0.0316 RezG3(G)
Complexity = 138.6683 + 0.5511 RezG3(G)
Boiling point = 517.5597 + 0.0829 RezG3(G)
Molecular weight=124.7707 + 0.3038 RezG3(G)
Molecular volume = 39.1387 + 0.2484 RezG3(G)
Flash point = 266.7802 + 0.0502 RezG3(G)

The physico-chemical properties listed in Table 3 serve as essential descriptors for the desired molecular
properties. The development of QSPR model requires these characteristics. In this case, evaluating the depend-
ability and predictive capability of the QSPR model depends significantly on statistical measures like the cor-
relation coeflicient (r), standard error (S.E. ), F-statistic, and p-value. Tables 4, 5, 6, 7, 8,9, 10, and 11 provide an
overview of these statistical measures that shed light on the strength and importance of the correlations between
the topological indices and the reported physico-chemical properties. These statistical parameters guarantee a
thorough assessment of the model’s performance, allowing scientists to determine how well the model predicts
the desired molecular attributes using the topological indices that are specified.

The correlation coefficients between particular topological descriptors and physico-chemical parameters are
shown in Table 4. Interestingly, Polarizability has a significant linear relationship with the SS(G) index, as demon-
strated by its high coefficient of 0.9803. The M, (G) index, which measures complexity, shows a strong association
with a coefficient of 0.8722. Furthermore, Boiling point (B.P) has a 0.6811 correlation coefficient and significantly
aligns with the M, (G) index. The RezG3 index and molecular weight (M.W) have a strong association (coeficient
0f 0.8809), highlighting the topological descriptor’s predictive ability. Furthermore, a good correlation between
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Polarizability B.P°C

Name of drug com’ Complexity (760 mmHg) | Molecular weight | Molecular volume | Flash point
Sulfadiazine 25 327 512.6 250.28 167.3 263.8
Dorzolamide 29.9 534 575.8 324.4 211 302
Meloxicam 34.1 628 520.9 351.4 219.6 268.8
Sulphadoxine 30.1 420 522.8 310.33 215.3 270
Meticrane 25.6 485 549.1 275.3 188.1 285.9
Famotidine 31.3 469 662.4 337.5 183.6 354.4
Dabrafenib 50.5 817 653.7 519.6 359.9 349.2
Diuril 24.5 532 608.8 295.7 144 322
Daranide 24.3 452 590.5 305.2 171.2 310.9
Metahydrin 30.5 571 631.3 380.7 217.7 335.6
Sulfapyridine 259 331 473.5 249.29 174.1 240.2

Table 3. The properties of drugs related to their Physico-chemical characteristics.

T.I Polarizability | Complexity | Boiling point | Molecular weight | Molar Volume | Flash Point
M (G) 0.7466 0.7532 0.6811 0.6644 0.6843 0.681

M (G) 0.9587 0.8722 0.3173 0.8986 0.9656 0.3176
H(G) 0.9745 0.7997 0.3547 0.8718 0.9213 0.3551
F(G) 0.9350 0.8695 0.3718 0.9071 0.9584 0.37201
SS(G) 0.9803 0.8456 0.3475 0.8980 0.9546 0.3478
RezG>(G) 0.9756 0.8492 0.3239 0.8939 0.9588 0.3243
RezG3(G) 0.9228 0.8707 0.2914 0.8809 0.9542 0.2917

Table 4. Correlation coefficients of T.I with respect to different physical characteristics.

A B r r? S.E F P
Polarizability | 16.5920 0.1177 | 0.7466 | 0.5574 | 52603 | 11.3342 0.008
Complexity 253.1917 | 2.1931 | 0.7532 | 0.5673 | 96.0935 11.8013 | 0.007
B.P 562.5737 | 0.0892 | 0.06811 | 0.0046 | 65.5516 | 0.0419 0.842
MW 2057471 | 1.0540 | 0.6644 0.4414 | 59.4897 | 7.1119 0.025
MV 110.2459 | 0.8195 | 0.6843 | 0.4682 | 43.8155 | 7.9250 0.020
EP 294.0339 | 0.0539 | 0.0681 | 0.0046 | 39.6459 | 0.0419 0.842

Table 5. The statistical parameters employed in the QSPR model with respect to M; (G).

A B r r? S.E F P
Polarizability 7.5184 0.1832 0.9587 | 0.9191 2.2492 102.2225 | 0.000
Complexity 1255086 | 3.07977 | 0.8722 | 0.7607 71.4645 | 28.6095 0.000
B.P 510.5981 | 0.5039 0.3173 | 0.1007 62.3089 | 1.0076 0.341
MW 113.6467 1.7289 0.8986 0.8075 | 34.9190 | 37.7636 0.000
M.V 31.4493 1.4024 0.9656 | 0.9324 15.6204 | 124.1682 | 0.000
EP 262.5657 | 0.3051 0.3176 | 0.1009 37.6808 | 1.0097 0.341

Table 6. The statistical parameters employed in the QSPR model with respect to M, (G).

Molar Volume (M.V) and the RezG, index is indicated by a high coefficient of 0.9588, indicating a dependable
link between the two variables. In Table 5, we have shown the statistical parameters employed in the QSPR
model with respect to M, (G). color redIn Fig. 5, we have shown the correlation coeflicients with respect to TIs.
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A B r r? S.E F P
Polarizability | 5.0573 2.9345 0.9745 | 0.9496 | 1.7748 | 169.6371 | 0.000
Complexity 125.4552 | 44.4959 | 0.7997 | 0.6396 | 87.7064 | 15.9698 | 0.003
B.P 496.9339 | 8.8771 0.3547 | 0.1258 | 61.4309 | 1.29568 | 0.284
MW 101.2243 | 26.4279 | 0.8718 | 0.7600 | 38.9939 | 28.5007 | 0.000
MV 24.4009 | 21.0829 | 0.9213 | 0.8488 | 23.3656 | 50.5158 | 0.000
EP 2542942 | 5.3739 0.3551 | 0.1261 | 37.1488 | 1.2985 0.283

Table 7. The statistical parameters employed in the QSPR model with respect to H(G).

A B r r? S.E F P
Polarizability 5.6774 0.0798 0.9350 0.8743 2.8037 62.5779 0.000
Complexity 85.4367 1.3719 0.8695 0.7561 72.1533 | 27.8948 0.000
B.P 491.9821 | 0.2638 0.3718 0.1382 60.9948 | 1.4434 0.260
MW 88.2033 0.7798 | 0.9071 0.8228 | 33.5072 | 41.7875 0.000
M.V 14.0497 0.6219 0.9584 0.9186 17.1481 101.4976 | 0.000
EP 251.3014 | 0.1597 0.37201 | 0.1384 36.8851 1.446 0.259

Table 8. The statistical parameters employed in the QSPR model with respect to F(G).

A B r r? S.E F P
Polarizability 5.67009 1.1078 0.9803 | 0.9611 1.5600 222.2048 | 0.000
Complexity 1157992 | 17.6545 | 0.8456 | 0.7150 77.9856 | 22.5826 0.001
B.P 500.7366 | 3.2629 0.3475 | 0.1207 61.6097 | 1.2359 0.295
MW 101.4689 | 10.2152 | 0.8980 0.8064 | 35.0221 | 37.4887 0.000
M.V 23.5397 8.1969 0.9546 | 0.9112 17.9057 | 92.3453 0.000
EP 256.5959 | 1.9753 0.3478 | 0.1209 37.2571 | 1.2387 0.294

Table 9. The statistical parameters employed in the QSPR model with respect to SS(G).

2

A B r r S.E F P
Polarizability 6.6479 0.9945 0.9756 | 0.9518 1.7352 177.8857 | 0.000
Complexity 127.9736 | 159940 | 0.8492 | 0.7211 77.1488 | 77.1488 0.000
B.P 507.9909 | 2.7443 0.3239 | 0.1049 62.1605 | 1.0554 0.331
MW 110.4326 | 9.1732 0.8939 0.7991 | 35.6809 | 35.7879 0.000
M.V 29.1663 7.4271 0.9588 | 0.9192 17.0778 | 102.4097 | 0.000
EP 260.9856 | 1.6614 0.3243 | 0.1052 37.5907 | 1.0577 0.330

Table 10. The statistical parameters employed in the QSPR model with respect to RezG,(G).

A B r r? S.E F P
Polarizability | 9.0849 0.0316 | 0.9228 | 0.8518 | 3.0467 | 51.6164 | 0.000
Complexity 138.6683 | 0.5511 | 0.8707 | 0.7582 | 71.8395 | 28.2179 | 0.000
B.P 517.5597 | 0.0829 | 0.2914 | 0.0849 | 62.8520 | 0.8353 | 0.384
MW 1247707 | 0.3038 | 0.8809 | 0.7759 | 37.6748 | 31.1726 | 0.000
MV 39.1387 | 0.2484 | 0.9542 | 0.9106 | 17.9687 | 91.6356 | 0.000
EP 266.7802 | 0.0502 | 0.2917 | 0.0851 | 38.0099 | 0.8371 | 0.384

Table 11. The statistical parameters employed in the QSPR model with respect to RezG3(G).
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Figure 5. Correlation coefficients with respect to TIs disscused in Table 2.

Tables 12, 13, 14, 15, 16 and 17 show the computed values of boiling point , flash point, molar volume, molecu-
lar weight, complexity, and polarizability that were compared to their corresponding actual values in order to
assess the effectiveness of regression models for predicting different physicochemical properties of sulfonamide
drugs. In addition to providing insights into the models’ potential utility in forecasting the physicochemical fea-
tures of sulfonamide drugs and advancing drug development and study, this thorough evaluation is an essential
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step in demonstrating the models’ robustness and reliability. Also graphical comparison shown in Fig. 6.

Polar | M;(G) | Mx(G) | HG) | F(G) SS(G) | RezG,(G) | RezGs(G)
Sulfadiazine 25 267142 | 252888 | 27.7087 | 23.8718 | 26.4823 | 26.3366 24.5689
Dorzolamide | 29.9 | 28.8328 | 30.4184 | 28.5054 | 30.4154 | 29.1557 |29.4811 31.3313
Meloxicam 341 | 43.1922 | 355480 | 35.1010 | 33.6074 | 353136 | 35.6163 35.3129
Sulphadoxine | 30.1 | 29.1859 | 30.9680 | 28.1559 | 335276 | 29.4101 | 29.8482 32.3425
Meticrane 256 | 27.6558 | 27.8536 | 25.8083 | 28.1810 | 26.7606 | 27.0470 28.6137
Famotidine 313 | 27.6558 | 25.6552 | 30.3917 | 25.6274 | 28.1530 | 27.3169 24.1897
Debrafenib 50.5 | 39.1904 | 49.4712 | 50.3604 | 48.6098 | 50.5621 | 50.2686 47.8897
Diurill 245 | 273027 | 262048 | 264372 | 269840 | 263403 | 26.1709 262753
Daranide 243 | 264788 | 25.1056 | 23.3630 | 26.4254 | 24.0025 | 24.0801 26.1489
Metahydrine | 30.5 | 28.8328 | 29.8688 | 78.1559 | 30.4154 | 29.0392 | 29.1852 30.3833
Sulfapyridine | 259 | 267142 | 25.2888 | 27.7087 | 23.8718 | 26.4823 | 263366 24,5689

Table 12. Comparison of actual and computed values of Polarizability from regression models of TIs.

Complex | M;(G) My(G) | H(G) F(G) SS(G) RezG,(G) | RezGs(G)
Sulfadiazine 327 4417983 | 4242492 | 468.9191 | 398.2299 | 177.0993 | 444.6164 | 408.7073
Dorzolamide | 534 4812741 | 5104836 | 480.9997 | 510.7257 | 184.9733 | 495.1878 | 526.6427
Meloxicam 628 748.8323 | 596.7180 | 581.0087 | 565.6017 | 203.1108 | 593.8564 | 596.081
Sulphadoxine | 420 487.8534 | 519.7230 | 4757002 | 564.2298 | 1857228 | 501.0912 | 544.273
Meticrane 485 4593431 | 467.3664 | 440.1035 | 472.3125 | 177.9189 | 456.0409 | 479.248
Famotidine 469 4593431 | 4304088 | 509.6017 | 4284117 | 182.0201 | 460.3817 | 402.094
Debrafenib 817 674.2669 | 830.7828 | 812.3874 | 823.5189 | 248.0237 | 829.5008 | 815.419
Diurill 532 4527638 | 439.6482 | 449.6390 | 451.7340 | 176.6810 | 4419518 | 438.466
Daranide 452 4374121 | 4211694 | 4030251 | 3954861 | 169.7453 | 408.3260 | 436.2623
Metahydrine | 571 481.2741 | 501.2442 | 480.9997 | 510.7257 | 184.6304 | 490.4280 | 510.1097
Sulfapyridine | 331 4417983 | 4242492 | 4689191 | 398.2299 | 177.0993 | 444.6169 | 408.707

Table 13. Comparison of actual and computed values of Complexity from regression models of TIs.
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BP | M;(G) M;(G) | H(G) F(G) SS(G) RezG,(G) | RezGs(G)
Sulfadiazine 512.6 | 5702449 | 559.4764 | 5654562 | 552.1285 | 562.0367 | 562.3215 | 558.1807
Dorzolamide 575.8 571.8505 573.5856 567.8664 573.7601 569.9107 570.9987 575.9213
Meloxicam 5209 | 582.7329 | 587.6948 | 587.8185 | 5843121 | 588.0482 | 587.9285 | 586.3667
Sulphadoxine | 522.8 | 572.1181 | 575.0973 | 566.8091 | 584.0483 | 570.6602 | 572.0116 | 578.5741
Meticrane 549.1 | 570.9585 | 560.5310 | 559.7074 | 556.3737 | 562.8563 | 564.2817 | 568.7919
Famotidine 6624 | 5709585 | 560.4842 | 5735726 | 557.9321 | 566.9575 | 565.0265 | 557.1859
Debrafenib 653.7 | 579.7001 | 6259912 | 633.9795 | 633.9065 | 632.9611 | 6283611 | 619.3609
Diurill 608.8 | 570.6909 | 561.9959 | 561.6098 | 5624167 | 561.6184 | 561.8643 | 562.6573
Daranide 590.5 | 570.0665 | 558.9725 | 5523101 | 5605701 | 554.7327 | 566.0946 | 562.3257
Metahydrine | 631.3 | 571.8505 | 572.0739 | 566.8091 | 573.7601 | 569.5678 | 570.1820 | 573.4343
Sulfapyridine | 4735 | 5702449 | 559.4764 | 565.4562 | 552.1285 | 562.0367 | 562.3215 | 558.1807

Table 14. Comparison of actual and computed values of Boiling Point from regression models of TIs.

MW M, (G) M>(G) H(G) F(G) SS(G) RezG1(G) | RezG3(G)
Sulfadiazine 250.28 | 296.3911 | 281.3500 | 305.2213 | 265.9977 | 293.3819 | 292.0399 273.6327
Dorzolamide 3244 315.3621 | 329.7592 | 312.3964 | 329.9413 | 318.0332 | 321.0447 338.6459
Meloxicam 351.4 4439511 | 378.1684 | 371.7958 | 361.1333 | 374.8164 | 377.6351 376.9247
Sulphadoxine 310.33 | 318.5251 | 334.9459 | 309.2489 | 360.3535 | 320.3796 | 324.4305 348.3675
Meticrane 275.3 304.8231 | 305.5546 | 288.1066 | 308.1069 | 295.9479 | 298.5924 312.5191
Famotidine 337.5 304.8231 | 284.8078 | 329.3843 | 283.1533 | 308.7874 | 301.0820 269.9871
Debrafenib 519.6 408.1151 | 509.5648 | 509.2209 | 507.7357 | 515.4256 | 482.1637 497.8371
Diurill 295.7 301.6611 | 289.9945 | 293.7701 | 296.4099 | 292.0723 | 281.5935 290.0379
Daranide 305.2 294.2831 | 279.6211 | 266.0842 | 290.9513 | 270.5151 | 271.2260 288.8227
Metahydrine 380.7 315.3631 | 324.5725 | 309.2489 | 329.9413 | 316.9596 | 318.3147 329.5319
Sulfapyridine 249.29 | 296.3911 | 281.3500 | 305.2213 | 265.9977 | 293.3819 | 292.0399 273.6327

Table 15. Comparison of actual and computed values of Molecular Weight from regression models of TIs.

M.V | Mi(G) M;(G) H(G) F(G) SS(G) RezGy(G) | RezG3(G)
Sulfadiazine 167.3 | 180.7229 | 167.4821 187.1398 | 155.8429 | 177.5349 | 176.2051 160.8547
Dorzolamide 211 195.4739 | 206.7493 | 192.8638 | 206.8387 | 197.3156 | 199.6888 214.0123
Meloxicam 219.6 | 2954529 | 246.0165 | 240.2497 | 231.7147 | 242.8797 | 245.5073 245.3107
Sulphadoxine 2153 | 197.9324 | 210.9565 | 190.3528 | 231.0928 | 199.1984 | 202.4301 221.9611
Meticrane 188.1 187.2789 | 187.1157 | 173.4865 | 189.4255 | 179.5939 | 181.5102 192.6494
Famotidine 183.6 | 187.2789 | 170.2869 | 206.4159 | 169.5247 | 189.8966 | 183.5259 157.8739
Debrafenib 359.9 | 267.5899 | 352.5989 | 349.8808 | 348.6319 | 355.7076 | 354.9330 344.1739
Diurill 144 184.8204 | 174.4941 | 178.0046 | 180.0970 | 176.4840 | 174.9677 174.2683
Daranide 171.2 | 179.0839 | 166.0797 | 155.9181 175.7437 | 159.1861 | 159.3530 173.2747
Metahydrine 217.7 | 1954739 | 202.5421 | 190.3528 | 206.8387 | 196.4541 | 197.4785 206.5603
Sulfapyridine 174.1 | 180.7229 | 167.4821 187.1398 | 155.8429 | 177.5349 | 176.2051 160.8547

Table 16. Comparison of actual and computed values of Molecular Volume from regression models of TIs.

Conclusion

A Python algorithm is developed to compute degree-based topological indices, which were then used to examine
eleven different sulfonamide drugs. This approach has yielded important insights into the chemical features of
these drugs. After that, a regression model isused to determine the characteristics of these drugs, and the results
showed that Polarizability, Complexity, Molecular Weight, and Molar Volume were significant factors. These
results imply that the behavior and characteristics of sulfonamide drugs are substantially influenced by these
particular molecular properties. Unexpectedly, the analysis also indicates that the regression model determined
that Boiling Point and Flash Point were not significant indicators. This suggests that both of these factors may
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EP | M;(G) My(G) | H(G) F(G) SS(G) RezG,(G) | RezGs(G)
Sulfadiazine 2638 | 298.6693 | 292.1604 | 2957753 | 287.7130 | 2937059 | 293.8773 | 291.3782
Dorzolamide | 302 | 299.6395 | 3007032 | 297.2343 | 300.8084 | 298.4727 | 299.1305 | 302.1210
Meloxicam 268.8 | 3062153 | 309.2460 | 309.3127 | 307.1964 | 309.4528 | 3093799 | 308.4462
Sulphadoxine | 270 | 299.8012 | 301.6185 | 2965943 | 307.0367 | 298.9264 | 299.7437 | 303.7274
Meticrane 2859 | 299.1005 | 2964318 | 292.2952 | 296.3368 | 294.2021 | 2950641 | 297.8038
Famotidine 3544 | 299.1005 | 2927706 | 300.6887 | 2912264 | 296.6848 | 2955150 | 290.7758
Debrafenib 3492 | 3043827 | 3324336 | 3372570 | 337.2200 | 336.6422 | 333.8578 | 328.4258
Diurill 322 | 2989388 | 293.6859 | 293.4468 | 293.9413 | 2934526 | 293.6005 | 294.0890
Daranide 3109 | 2985615 | 291.8553 | 287.8171 | 292.8234 | 289.2842 | 290.1076 | 293.8882
Metahydrine | 335.6 | 299.6395 | 299.7879 | 296.5943 | 300.8084 | 2982651 | 298.6361 | 300.6150
Sulfapyridine | 240.2 | 298.6693 | 292.1604 | 2957753 | 287.7130 | 2937059 | 293.8773 | 291.3782

Table 17. Comparison of actual and computed values of Flash Point from regression models of TIs.
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have a limited impact on the observed variances in the sulfonamide drugs under consideration within the frame-
work of this research. Our study improves research processes’ transparency and reproducibility by employing a
Python software. Since the software code is publicly available, other researchers can independently validate our
findings and repeat our methods. This openness encourages scientific integrity and makes it easier for research-
ers to work together.

Data availability
All data generated or analysed during this study are included in this published article.
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