Table 9 Performance metrics for 7 ML algorithms using the UNSW-NB15 dataset and SMOTE.

From: Using machine learning algorithms to enhance IoT system security

Ser.

Classifier

Accuracy (%)

Precision (%)

Specificity (%)

Recall (%)

F1-score (%)

AUC

1

Random forest

99.9

99.9

99.8

99.9

99.9

1.0

2

Naive Bayes

73.1

73.8

65.6

79.0

76.3

0.8

3

Decision Tree

99.9

100.0

100.0

99.1

99.5

0.8

4

Back propagation NN

67.6

66.7

49.9

82.0

73.6

0.6

5

XGBoost

99.9

100.0

100.0

99.1

99.9

1.0

6

AdaBoost

99.9

99.9.0

99.9

99.9

99.9

1.0

7

Ensembled RF-BPNN

99.9

99.9

99.8

99.9

99.9

1.0