Table 2 The results of different models on the RSSCN7 dataset.
Method | Pre | Rec | Acc | F1 |
---|---|---|---|---|
ResNet3448†| 0.8253 | 0.7588 | 0.7590 | 0.7450 |
ResNet5048†| 0.7864 | 0.7147 | 0.7230 | 0.6861 |
ResNet10148†| 0.8072 | 0.7228 | 0.7266 | 0.6793 |
AlexNet14†| 0.7938 | 0.7866 | 0.7878 | 0.7870 |
VGG1146†| 0.8515 | 0.8470 | 0.8489 | 0.8452 |
VGG1346†| 0.8393 | 0.8326 | 0.8237 | 0.8252 |
VGG1646†| 0.8342 | 0.8216 | 0.8237 | 0.8224 |
VGG1946†| 0.7583 | 0.7410 | 0.7374 | 0.7382 |
GoogleNet47†| 0.8588 | 0.8602 | 0.8597 | 0.8582 |
Mobilenetv250†| 0.9027 | 0.9012 | 0.8993 | 0.9000 |
Mobilenetv3-l50†| 0.8923 | 0.8937 | 0.8921 | 0.8906 |
Mobilenetv3-s50†| 0.8421 | 0.8436 | 0.8417 | 0.8399 |
Shufflenet-0.551†| 0.9345 | 0.9374 | 0.9353 | 0.9343 |
Shufflenet-151†| 0.9632 | 0.9654 | 0.9640 | 0.9639 |
Shufflenet-1.551†| 0.9410 | 0.9439 | 0.9424 | 0.9413 |
Shufflenet-251†| 0.9674 | 0.9686 | 0.9676 | 0.9675 |
densenet12152†| 0.9566 | 0.9570 | 0.9568 | 0.9565 |
densenet16152†| 0.9713 | 0.9710 | 0.9712 | 0.9706 |
densenet16952†| 0.9636 | 0.9641 | 0.9640 | 0.9635 |
densenet20152†| 0.9557 | 0.9584 | 0.9568 | 0.9566 |
Efficient-b0-1k53†| 0.9449 | 0.9451 | 0.9460 | 0.9444 |
Efficient-b1-1k53†| 0.9396 | 0.9394 | 0.9388 | 0.9388 |
Efficient-b2-1k53†| 0.9347 | 0.9350 | 0.9353 | 0.9343 |
Efficient-b3-1k53†| 0.9633 | 0.9650 | 0.9640 | 0.9638 |
Efficient-b4-1k53†| 0.9643 | 0.9650 | 0.9640 | 0.9643 |
Efficient-b5-1k53†| 0.9400 | 0.9412 | 0.9388 | 0.9370 |
Efficient-b6-1k53†| 0.9342 | 0.9380 | 0.9353 | 0.9347 |
Efficient-b7-1k53†| 0.8786 | 0.8766 | 0.8777 | 0.8748 |
Efficientv2-l-1k53†| 0.9310 | 0.9317 | 0.9317 | 0.9308 |
Efficientv2-m-1k53†| 0.9242 | 0.9249 | 0.9245 | 0.9239 |
Efficientv2-s-1k53†| 0.8908 | 0.8922 | 0.8921 | 0.8902 |
Convnext-s-1k54†| 0.9403 | 0.9387 | 0.9388 | 0.9382 |
Convnext-b-22k54†| 0.9438 | 0.9423 | 0.9424 | 0.9415 |
Convnext-b-1k54†| 0.9527 | 0.9535 | 0.9532 | 0.9529 |
Convnext-t-1k54†| 0.9665 | 0.9680 | 0.9676 | 0.9667 |
Convnext-l-1k54†| 0.9450 | 0.9415 | 0.9424 | 0.9414 |
Convnext-l-22k54†| 0.9608 | 0.9599 | 0.9604 | 0.9599 |
Convnext-xl-22k54†| 0.9086 | 0.9065 | 0.9029 | 0.9021 |
DFAGCN56‡ | – | – | 0.9414 | – |
SNN-VGG-1542‡ | – | – | 0.9454 | – |
ViT-b-p1624†| 0.9464 | 0.9486 | 0.9460 | 0.9471 |
ViT-b-p3224†| 0.9089 | 0.9095 | 0.9101 | 0.9091 |
ViT-l-p1624†| 0.9571 | 0.9579 | 0.9568 | 0.9574 |
TransResUNet60†| 0.9654 | 0.9325 | 0.9338 | 0.9256 |
BPECN61‡ | – | – | 0.9400 | – |
SKAL-AlexNet62‡ | – | – | 0.9335 | – |
SKAL-GoogleNet62‡ | – | – | 0.9575 | – |
SKAL-ResNet1862‡ | – | – | 0.9604 | – |
LFAGCU (ours) | 0.9820 | 0.9820 | 0.9820 | 0.9818 |