Table 2 The results of different models on the RSSCN7 dataset.

From: Local feature acquisition and global context understanding network for very high-resolution land cover classification

Method

Pre

Rec

Acc

F1

ResNet3448†

0.8253

0.7588

0.7590

0.7450

ResNet5048†

0.7864

0.7147

0.7230

0.6861

ResNet10148†

0.8072

0.7228

0.7266

0.6793

AlexNet14†

0.7938

0.7866

0.7878

0.7870

VGG1146†

0.8515

0.8470

0.8489

0.8452

VGG1346†

0.8393

0.8326

0.8237

0.8252

VGG1646†

0.8342

0.8216

0.8237

0.8224

VGG1946†

0.7583

0.7410

0.7374

0.7382

GoogleNet47†

0.8588

0.8602

0.8597

0.8582

Mobilenetv250†

0.9027

0.9012

0.8993

0.9000

Mobilenetv3-l50†

0.8923

0.8937

0.8921

0.8906

Mobilenetv3-s50†

0.8421

0.8436

0.8417

0.8399

Shufflenet-0.551†

0.9345

0.9374

0.9353

0.9343

Shufflenet-151†

0.9632

0.9654

0.9640

0.9639

Shufflenet-1.551†

0.9410

0.9439

0.9424

0.9413

Shufflenet-251†

0.9674

0.9686

0.9676

0.9675

densenet12152†

0.9566

0.9570

0.9568

0.9565

densenet16152†

0.9713

0.9710

0.9712

0.9706

densenet16952†

0.9636

0.9641

0.9640

0.9635

densenet20152†

0.9557

0.9584

0.9568

0.9566

Efficient-b0-1k53†

0.9449

0.9451

0.9460

0.9444

Efficient-b1-1k53†

0.9396

0.9394

0.9388

0.9388

Efficient-b2-1k53†

0.9347

0.9350

0.9353

0.9343

Efficient-b3-1k53†

0.9633

0.9650

0.9640

0.9638

Efficient-b4-1k53†

0.9643

0.9650

0.9640

0.9643

Efficient-b5-1k53†

0.9400

0.9412

0.9388

0.9370

Efficient-b6-1k53†

0.9342

0.9380

0.9353

0.9347

Efficient-b7-1k53†

0.8786

0.8766

0.8777

0.8748

Efficientv2-l-1k53†

0.9310

0.9317

0.9317

0.9308

Efficientv2-m-1k53†

0.9242

0.9249

0.9245

0.9239

Efficientv2-s-1k53†

0.8908

0.8922

0.8921

0.8902

Convnext-s-1k54†

0.9403

0.9387

0.9388

0.9382

Convnext-b-22k54†

0.9438

0.9423

0.9424

0.9415

Convnext-b-1k54†

0.9527

0.9535

0.9532

0.9529

Convnext-t-1k54†

0.9665

0.9680

0.9676

0.9667

Convnext-l-1k54†

0.9450

0.9415

0.9424

0.9414

Convnext-l-22k54†

0.9608

0.9599

0.9604

0.9599

Convnext-xl-22k54†

0.9086

0.9065

0.9029

0.9021

DFAGCN56‡

–

–

0.9414

–

SNN-VGG-1542‡

–

–

0.9454

–

ViT-b-p1624†

0.9464

0.9486

0.9460

0.9471

ViT-b-p3224†

0.9089

0.9095

0.9101

0.9091

ViT-l-p1624†

0.9571

0.9579

0.9568

0.9574

TransResUNet60†

0.9654

0.9325

0.9338

0.9256

BPECN61‡

–

–

0.9400

–

SKAL-AlexNet62‡

–

–

0.9335

–

SKAL-GoogleNet62‡

–

–

0.9575

–

SKAL-ResNet1862‡

–

–

0.9604

–

LFAGCU (ours)

0.9820

0.9820

0.9820

0.9818

  1. Bold indicates the optimal solution, ‡represents the data results from the reference literature, and †represents the experimental results based on the settings of this paper’s parameters.