Table 3 The results of different models on the WHU-RS19 dataset.

From: Local feature acquisition and global context understanding network for very high-resolution land cover classification

Method

Pre

Rec

Acc

F1

AlexNet14†

0.6031

0.5908

0.5833

0.5591

VGG1146†

0.8024

0.7904

0.7708

0.7666

VGG1346†

0.7955

0.8096

0.7812

0.7781

VGG1646†

0.8704

0.8509

0.8438

0.8446

VGG1946†

0.8341

0.8412

0.8333

0.8184

GoogleNet47†

0.8518

0.8228

0.8125

0.8153

ResNet3448†

0.9089

0.8421

0.8333

0.8371

ResNet5048†

0.8956

0.8509

0.8646

0.8395

ResNet10148†

0.8614

0.7728

0.7604

0.7578

Mobilenetv250†

0.9895

0.9829

0.9792

0.9848

Mobilenetv3-l50†

0.9722

0.9671

0.9688

0.9661

Mobilenetv3-s50†

0.9912

0.9868

0.9896

0.9877

Shufflenet- × 0.551†

0.9529

0.9566

0.9479

0.9505

Shufflenet- × 151†

0.9868

0.9912

0.9896

0.9877

Shufflenet- × 1.551†

0.9836

0.9803

0.9792

0.9800

Shufflenetv2- × 251†

0.9912

0.9868

0.9896

0.9877

densenet12152†

0.9895

0.9868

0.9896

0.9866

densenet16152†

0.9895

0.9868

0.9896

0.9866

densenet16952†

0.9912

0.9868

0.9896

0.9877

densenet20152†

0.9868

0.9868

0.9896

0.9850

Efficient-b0-1k53†

0.9675

0.9715

0.9688

0.9660

Efficient-b1-1k53†

0.9781

0.9763

0.9792

0.9743

Efficient-b2-1k53†

0.9866

0.9789

0.9792

0.9797

Efficient-b3-1k53†

0.9722

0.9741

0.9688

0.9705

Efficient-b4-1k53†

0.9942

0.9934

0.9896

0.9934

Efficient-b5-1k53†

0.9868

0.9868

0.9896

0.9850

Efficient-b6-1k53†

0.9942

0.9884

0.9879

0.9913

Efficient-b7-1k53†

0.9538

0.9465

0.9479

0.9465

Efficientv2-l-1k53†

0.9825

0.9759

0.9688

0.9771

Efficientv2-m-1k53†

0.9876

0.9846

0.9792

0.9855

Efficientv2-s-1k53†

0.9412

0.9368

0.9271

0.9284

Convnext-s-1k54†

0.9749

0.9697

0.9688

0.9694

Convnext-b-22k54†

0.9688

0.9658

0.9688

0.9634

Convnext-b-1k54†

0.9925

0.9895

0.9896

0.9901

Convnext-t-1k54†

0.9722

0.9697

0.9688

0.9677

Convnext-l-1k54†

0.9810

0.9803

0.9792

0.9784

Convnext-l-22k54†

0.9732

0.9803

0.9688

0.9743

Convnext-xl-22k54†

0.9807

0.9737

0.9792

0.9743

MLLD57‡

–

–

0.9069

–

HSL-MINet58‡

–

–

0.9122

–

ViT-b-p1624†

0.9810

0.9803

0.9792

0.9784

ViT-b-p3224†

0.9722

0.9671

0.9688

0.9661

ViT-l-p1624†

0.9912

0.9868

0.9896

0.9877

TransResUNet60†

0.9656

0.9566

0.9583

0.9568

BPECN61‡

–

–

0.9820

–

SF-MSFormer-ResNet1864‡

–

–

0.9860

–

LGFormer

–

–

0.9920

–

LFAGCU (ours)

0.9942

0.9934

0.9896

0.9934

  1. Bold indicates the optimal solution, ‡represents the data results from the reference literature, and †represents the experimental results based on the settings of this paper's parameters.