Table 4 The results of different models on the UCMerced-LandUse dataset.
Method | Pre | Rec | Acc | F1 |
|---|---|---|---|---|
AlexNet14†| 0.5729 | 0.5835 | 0.5681 | 0.5529 |
VGG1146†| 0.7477 | 0.7225 | 0.7277 | 0.7188 |
VGG1346†| 0.8406 | 0.8365 | 0.8451 | 0.8344 |
VGG1646†| 0.8499 | 0.8441 | 0.8498 | 0.8365 |
VGG1946†| 0.7596 | 0.7598 | 0.7653 | 0.7448 |
GoogleNet47†| 0.8622 | 0.8593 | 0.8638 | 0.8521 |
ResNet3448†| 0.9197 | 0.8835 | 0.8826 | 0.8782 |
ResNet5048†| 0.9147 | 0.8772 | 0.8873 | 0.8765 |
ResNet10148†| 0.8976 | 0.8349 | 0.8498 | 0.8283 |
Mobilenetv250†| 0.9503 | 0.9483 | 0.9484 | 0.9475 |
Mobilenetv3-l50†| 0.9198 | 0.9161 | 0.9202 | 0.9147 |
Mobilenetv3-s50†| 0.9424 | 0.9320 | 0.9343 | 0.9314 |
Shufflenet- × 0.551†| 0.9240 | 0.9241 | 0.9249 | 0.9194 |
Shufflenet- × 151†| 0.9758 | 0.9764 | 0.9765 | 0.9740 |
Shufflenet- × 1.551†| 0.9689 | 0.9654 | 0.9671 | 0.9655 |
Shufflenetv2- × 251†| 0.9788 | 0.9692 | 0.9718 | 0.9724 |
densenet12152†| 0.9897 | 0.9848 | 0.9859 | 0.9865 |
densenet16152†| 0.9877 | 0.9828 | 0.9859 | 0.9843 |
densenet16952†| 0.9794 | 0.9757 | 0.9765 | 0.9763 |
densenet20152†| 0.9804 | 0.9761 | 0.9765 | 0.9777 |
Efficient-b0-1 k53†| 0.9601 | 0.9573 | 0.9577 | 0.9572 |
Efficient-b1-1 k53†| 0.9884 | 0.9884 | 0.9859 | 0.9879 |
Efficient-b2-1 k53†| 0.9893 | 0.9881 | 0.9859 | 0.9879 |
Efficient-b3-1 k53†| 0.9873 | 0.9841 | 0.9859 | 0.9847 |
Efficient-b4-1 k53†| 0.9781 | 0.9765 | 0.9765 | 0.9762 |
Efficient-b5-1 k53†| 0.9728 | 0.9700 | 0.9718 | 0.9697 |
Efficient-b6-1 k53†| 0.9784 | 0.9750 | 0.9765 | 0.9760 |
Efficient-b7-1 k53†| 0.9078 | 0.8725 | 0.8685 | 0.8668 |
efficientV2_l53†| 0.9422 | 0.9321 | 0.9343 | 0.9344 |
efficientV2_m53†| 0.9201 | 0.9115 | 0.9155 | 0.9099 |
efficientV2_s53†| 0.9397 | 0.9272 | 0.9296 | 0.9298 |
Vgg-Vote55‡ | 0.9485 | 0.9642 | 0.9512 | 0.9567 |
Convnext-s-1k54†| 0.9603 | 0.9615 | 0.9624 | 0.9587 |
Convnext-b-22k54†| 0.9665 | 0.9701 | 0.9671 | 0.9656 |
Convnext-b-1k54†| 0.9740 | 0.9728 | 0.9718 | 0.9711 |
Convnext-t-1k54†| 0.9687 | 0.9669 | 0.9671 | 0.9660 |
Convnext-l-1k54†| 0.9814 | 0.9816 | 0.9812 | 0.9805 |
Convnext-l-22k54†| 0.9699 | 0.9630 | 0.9624 | 0.9631 |
Convnext-xl-22k54†| 0.9695 | 0.9705 | 0.9671 | 0.9678 |
DFAGCN56‡ | – | – | 0.9848 | – |
SNN-VGG-1542‡ | – | – | 0.9914 | – |
MLLD57‡ | – | – | 0.7776 | – |
HSL-MINet58‡ | – | – | 0.8189 | – |
ViT-b-p1624†| 0.9592 | 0.9568 | 0.9577 | 0.9555 |
ViT-b-p3224†| 0.9697 | 0.9606 | 0.9624 | 0.9616 |
ViT-l-p1624†| 0.9603 | 0.9533 | 0.9531 | 0.9550 |
T2T-VIT-1259‡ | – | – | 0.9910 | – |
TransResUNet60†| 0.9502 | 0.9492 | 0.9484 | 0.9460 |
BPECN61‡ | – | – | 0.9772 | – |
SKAL-AlexNet62‡ | – | – | 0.9738 | – |
SKAL-ResNet1862‡ | – | – | 0.9952 | – |
SKAL-GoogleNet62‡ | – | – | 0.9940 | – |
GCSANet63‡ | – | – | 0.9832 | – |
EMTCAL32‡ | – | – | 0.9929 | – |
SF-MSFormer-ResNet1864‡ | – | – | 0.9935 | – |
LGLFormer65‡ | – | – | 0.9948 | – |
LFAGCU (ours) | 0.9966 | 0.9960 | 0.9953 | 0.9962 |