Table 4 The results of different models on the UCMerced-LandUse dataset.

From: Local feature acquisition and global context understanding network for very high-resolution land cover classification

Method

Pre

Rec

Acc

F1

AlexNet14†

0.5729

0.5835

0.5681

0.5529

VGG1146†

0.7477

0.7225

0.7277

0.7188

VGG1346†

0.8406

0.8365

0.8451

0.8344

VGG1646†

0.8499

0.8441

0.8498

0.8365

VGG1946†

0.7596

0.7598

0.7653

0.7448

GoogleNet47†

0.8622

0.8593

0.8638

0.8521

ResNet3448†

0.9197

0.8835

0.8826

0.8782

ResNet5048†

0.9147

0.8772

0.8873

0.8765

ResNet10148†

0.8976

0.8349

0.8498

0.8283

Mobilenetv250†

0.9503

0.9483

0.9484

0.9475

Mobilenetv3-l50†

0.9198

0.9161

0.9202

0.9147

Mobilenetv3-s50†

0.9424

0.9320

0.9343

0.9314

Shufflenet- × 0.551†

0.9240

0.9241

0.9249

0.9194

Shufflenet- × 151†

0.9758

0.9764

0.9765

0.9740

Shufflenet- × 1.551†

0.9689

0.9654

0.9671

0.9655

Shufflenetv2- × 251†

0.9788

0.9692

0.9718

0.9724

densenet12152†

0.9897

0.9848

0.9859

0.9865

densenet16152†

0.9877

0.9828

0.9859

0.9843

densenet16952†

0.9794

0.9757

0.9765

0.9763

densenet20152†

0.9804

0.9761

0.9765

0.9777

Efficient-b0-1 k53†

0.9601

0.9573

0.9577

0.9572

Efficient-b1-1 k53†

0.9884

0.9884

0.9859

0.9879

Efficient-b2-1 k53†

0.9893

0.9881

0.9859

0.9879

Efficient-b3-1 k53†

0.9873

0.9841

0.9859

0.9847

Efficient-b4-1 k53†

0.9781

0.9765

0.9765

0.9762

Efficient-b5-1 k53†

0.9728

0.9700

0.9718

0.9697

Efficient-b6-1 k53†

0.9784

0.9750

0.9765

0.9760

Efficient-b7-1 k53†

0.9078

0.8725

0.8685

0.8668

efficientV2_l53†

0.9422

0.9321

0.9343

0.9344

efficientV2_m53†

0.9201

0.9115

0.9155

0.9099

efficientV2_s53†

0.9397

0.9272

0.9296

0.9298

Vgg-Vote55‡

0.9485

0.9642

0.9512

0.9567

Convnext-s-1k54†

0.9603

0.9615

0.9624

0.9587

Convnext-b-22k54†

0.9665

0.9701

0.9671

0.9656

Convnext-b-1k54†

0.9740

0.9728

0.9718

0.9711

Convnext-t-1k54†

0.9687

0.9669

0.9671

0.9660

Convnext-l-1k54†

0.9814

0.9816

0.9812

0.9805

Convnext-l-22k54†

0.9699

0.9630

0.9624

0.9631

Convnext-xl-22k54†

0.9695

0.9705

0.9671

0.9678

DFAGCN56‡

–

–

0.9848

–

SNN-VGG-1542‡

–

–

0.9914

–

MLLD57‡

–

–

0.7776

–

HSL-MINet58‡

–

–

0.8189

–

ViT-b-p1624†

0.9592

0.9568

0.9577

0.9555

ViT-b-p3224†

0.9697

0.9606

0.9624

0.9616

ViT-l-p1624†

0.9603

0.9533

0.9531

0.9550

T2T-VIT-1259‡

–

–

0.9910

–

TransResUNet60†

0.9502

0.9492

0.9484

0.9460

BPECN61‡

–

–

0.9772

–

SKAL-AlexNet62‡

–

–

0.9738

–

SKAL-ResNet1862‡

–

–

0.9952

–

SKAL-GoogleNet62‡

–

–

0.9940

–

GCSANet63‡

–

–

0.9832

–

EMTCAL32‡

–

–

0.9929

–

SF-MSFormer-ResNet1864‡

–

–

0.9935

–

LGLFormer65‡

–

–

0.9948

–

LFAGCU (ours)

0.9966

0.9960

0.9953

0.9962

  1. Bold indicates the optimal solution, ‡represents the data results from the reference literature, and †represents the experimental results based on the settings of this paper's parameters.