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Fundamental solution 
of the time‑space bi‑fractional 
diffusion equation with a kinetic 
source term for anomalous 
transport
Anis Allagui 1,2*, Georgii Paradezhenko 3, Anastasiia Pervishko 3, Dmitry Yudin 3 & 
Hachemi Benaoum 4

The purpose of this paper is to study the fundamental solution of the time-space bi-fractional diffusion 
equation incorporating an additional kinetic source term in semi-infinite space. The equation is a 
generalization of the integer-order model ∂

t
ρ(x, t) = ∂2

x
ρ(x, t)− ρ(x, t) (also known as the Debye–

Falkenhagen equation) by replacing the first-order time derivative with the Caputo fractional derivative 
of order 0 < α < 1 , and the second-order space derivative with the Riesz-Feller fractional derivative of 
order 0 < β < 2 . Using the Laplace-Fourier transforms method, it is shown that the parametric solutions 
are expressed in terms of the Fox’s H-function that we evaluate for different values of α and β.

The general reaction-diffusion equation in a normalized form can be written as1:

where ρ = ρ(x, t) is the field variable that depends on position x and time t, and the functional f (ρ) is usually a 
nonlinear term pertinent to the process under consideration (e.g. f (ρ) = ρ(1− ρ) for Kolmogorov, Petrovsky, 
and Piskunov (KPP) nonlinearity, f (ρ) = ρm(1− ρ) for the mth-order Fisher nonlinearity, etc.). For the par-
ticular case of f (ρ) = −ρ we end up with the Debye–Falkenhagen equation:

which is used to describe a classical mean-field problem of electrodiffusive transport in electrochemistry (see 
Janssen2, Janssen and Bier3, Bazant et al.4, Singh and Kant5–7, and many others8). This model is best used for 
describing dynamics at planar electrodes. The partial differential equation given in (2) may be looked upon as 
a analog of the standard diffusion equation with a kinetic source term5. However, in practice, electrochemical 
devices and systems unavoidably exhibit in a way or another anomalies in their electrical response and fre-
quency dispersion of their properties due to their structural disorder, spatial heterogeneity, and wide spectrum 
of relaxation times.

Specifically, Eq. (2) considers changes in the reduced density of charge (the field variable ρ(x, t) ) through a 
control volume to be linear and memoryless, due to the fact that we only use a first-order Taylor series approxi-
mation in space and time9. Differential equations with integer-order differential operator are actually defined 
in an infinitesimally small neighborhood of the point under consideration, and therefore are a tool for describ-
ing only local media10. For the case of non-local media, the size of the control volume must be large enough 
compared to the scale(s) of the heterogeneity in the medium, which makes integer-order derivatives inadequate 
for describing media with heterogeneity. Furthermore, spatial heterogeneities are not necessarily static in the 
course of operation of the device or system, and therefore memory effects shall be taken into consideration11. 

(1)∂tρ = ∂2xρ + f (ρ)

(2)∂tρ = ∂2xρ − ρ
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This renders the problem of studying the complex behavior of electrochemical systems restricted when using 
traditional integer-order models12–16.

For a proper theoretical modeling of anomalous transport, one can adopt fractional calculus to include 
fractional time and/or spacial derivatives17. This is mainly attributed to the fact that the dynamics of transport 
processes substantially differs from the picture of classical transport owing to memory effects or spatial non-
locality of purely non-Markovian nature. Fractional calculus permits to deal with such situations via integrals 
and derivatives of any arbitrary real or complex order, and therefore permits to unify and extend integer-order 
integrals and derivatives used in classical models11,18,19. Saichev and Zaslavsky20, Mainardi et al.11, Gorenflo et al.21, 
and Bologna22,23 studied the generalization of the standard diffusion equation with fractional derivatives with 
respect to time and space (i.e. ∂tρ = ∂2xρ ), in which the first-order time derivative of the propagating quantity 
was replaced with a Caputo derivative and the second-order space derivative was replaced with a Riesz-Feller 
derivative (i.e. cDα

t ρ = D
β ,θ
x ρ , see definitions below). Kosztołowicz and Metzler24 described the transport of an 

antibiotic in a biofilm using a time-fractional subdiffusion-absorption equation based on the Riemann- Liouville 
time-fractional derivative. Saxena, Mathai and Haubold studied extensively in a series of papers25–29 unified 
forms of fractional kinetic equations and fractional reaction-diffusion equations in which the time derivative is 
replaced by either the Caputo, Riemann-Liouville or a generalized fractional derivative as defined by Hilfer30, and 
the space derivative is replaced by the Riesz-Feller derivative. Additional nonlinear terms pertinent to reaction 
processes are also considered. Fractional reaction-diffusion equations are of specific interest in a large class of 
science and engineering problems for describing non-Gaussian, non-Markovian, and non-Fickian phenomena.

The goal of this work is to study the bi-fractional (time and space) generalization of the (dimensionless) 
diffusion equation with a kinetic source term of the Debye and Falkenhagen type (see Section “Model”, Eq. (3) 
below), and understand how do the fractional orders of differentiation affect the dynamics of the propagating 
quantity. In Section “Analytical solutions” we provide the analytical solution to this equation in terms of Fox’s 
H-function using integral transform methods (Laplace–Fourier), followed by numerical simulations in Section 
“Numerical results” for different sets of values for the fractional parameters.

Model
We consider the bi-fractional diffusion equation with an additional source term given in one dimension by:

subjected to the boundary and initial conditions

This model is a generalization of Eq. (2) (i.e. by setting α = 1 , β = 2 , θ = 0 in Eq. (3)), and can describe 
for example the situation of anomalous ion transport through electrified membranes, porous electrodes, 
or other complex systems. In Eq. (3), the operator cDα

t  is the Caputo time fractional derivative of order 
α ( 0 < α < 1 ) replacing the first order time derivative in Eq. (2), and Dβ ,θ

x  is the Riesz-Feller space frac-
tional derivative of order β ( 0 < β < 2 ) replacing the second order space derivative11. The Caputo time-
fractional derivative of order α ( m− 1 < α < m,m ∈ N ) of f(t) is defined through the Laplace transform 
( f̃ (s) = L[f (t); s] =

∫∞
0 e−st f (t)dt, s ∈ C ) by:

This lead to the integro-differential definition:

that takes into account all past activities of the function up to the current time. For the case of α = m , we have 
the traditional, memoryless integer-order derivative:

Whereas for a sufficiently well-behaved function f(x), the Riesz-Feller space-fractional derivative of 
order β ( 0 < β � 2 ) and skewness θ ( |θ | < min {β , 2− β} ) is defined in terms of its Fourier transform 
( f̂ (k) = F{f (x); k} =

∫∞
−∞ eikxf (x)dx, k ∈ R ) as11:

In terms of integral representation, the Riesz-Feller derivative can be represented by:28:

(3)cDα
t ρ = Dβ ,θ

x ρ − ρ

(4)ρ(x = ±∞, t) = 0, ρ(x, t = 0) = δ(x).

(5)L
{

cDα
t f (t); s

}

= sα f̃ (s)−
m−1
∑

r=0

sα−r−1f (r)(0),

(6)cDα
t f (t) ≡

1

Ŵ(m− α)

t
∫

0

f (m)(τ )dτ

(t − τ)α+1−m
,

(7)cDα
t f (t) =

dmf (t)

dtm

(8)F
{

Dβ ,θ
x f (x); k

}

= −|k|βei(sgnk)θπ/2 f̂ (k)

(9)

Dβ ,θ
x f (x) = Ŵ(1+ β)

π
×







sin [(β + θ)π/2]

∞
�

0

f (x + ξ)− f (x)

ξ 1+β
dξ + sin [(β − θ)π/2]

∞
�

0

f (x − ξ)− f (x)

ξ 1+β
dξ






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For the specific case of θ = 0 , we have the symmetric operator with respect to x that can be interpreted as:

and Eq. (8) reduces to:

We note that there are many other ways to generalize the integer-order time and space derivatives to frac-
tional orders, using for instance the Hilfer/Hilfer-Katugampola and Weyl fractional operators as shown by Costa 
et al.31,32. However, for the boundary and initial conditions given in (4), the classical definitions of Caputo and 
Riesz-Feller are well suited for this study.

Analytical solutions
Case with 0 < α < 1 , β = 2

We start with the simple case of β = 2 and skewness θ = 0 , which makes Eq. (3) to reduce to the time fractional 
equation of the form

Taking into account the Laplace transform of the Caputo fractional time derivative, Eq. (12) in the Laplace 
space takes the form:

Using (4) and making the Fourier transform for both sides of Eq. (13), we come to

Thus, the solution of Eq. (12) in the Laplace-Fourier space reads,

In general, integral transform methods are commonly used for studying fractional linear diffusion equations, 
but when nonlinear terms are present other analytical techniques or numerical methods can be applied33–37.

Solution in the real‑Laplace space
To get the solution in the real space, it is convenient to make the inverse Laplace and Fourier transforms with 
respect to s and k, sequentially11. However, we might be interested in the solution obtained by the inverse Fourier 
transform with respect to k and remained in the Laplace space with respect to time t. Formally, one can write 
this solution in the form

Introducing the notation sα + 1 = a ( Re(s) > 0 and Re(a) > 0 ), we have

The integrand in Eq. (17) is analytic everywhere except for the isolated singularities k = ±√
ai , where it has 

simple poles. For x > 0 , using the residue theorem, we have

where the contour CR is shown in Fig. 1a.
As R → ∞ , the integral over the arc of the circle tends to zero, because the integrand

vanishes exponentially for x > 0 . Therefore,

(10)Dβ ,0
x f (x) = −

[

− d2

dx2

]β/2

(11)F
{

Dβ ,0
x f (x); k

}

= −|k|β f̂ (k)

(12)cDα
t ρ = ∂2xρ − ρ.

(13)sαρ̃(x, s)− sα−1ρ(x, 0) = ∂2x ρ̃(x, s)− ρ̃(x, s).

(14)sα ˆ̃ρ(k, s)− sα−1 = −k2 ˆ̃ρ(k, s)− ˆ̃ρ(k, s).

(15)ˆ̃ρ(k, s) = sα−1

sα + 1+ k2
.

(16)ρ̃(x, s) = 1

2π

∞
∫

−∞

sα−1

sα + 1+ k2
e−ixk dk.

(17)

ρ̃(x, s) = sα−1

2π

∞
∫

−∞

e−ixk dk

a+ k2

= sα−1

2π

∞
∫

−∞

e−ixk dk

(k −√
ai)(k +√

ai)
.

(18)lim
R→∞

∮

CR

e−ikx dk

(k −√
ai)(k +√

ai)
= −2π i resk=−√

ai

[

e−ikx

(k −√
ai)(k +√

ai)

]

,

e−ikx

(k +√
ai)(k −√

ai)
= e−ix Re kex Im k

(k +√
ai)(k −√

ai)
, Im k < 0
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Calculating the residue, we obtain

Substituting the latter and (19) in Eq. (18), we obtain

Thus, Eq. (17) takes the form

Similarly, for x < 0 we consider the contour CR is shown in Fig. 1b. The result for Eq. (17) in this case reads,

Then, by combining Eqs. (22) and (23) together, we come to

Finally, using a = sα + 1 , we obtain

We should note that for the time-fractional diffusion equation

the solution in the Laplace-Fourier space reads,

Thus, from Eq. (24) with a = sα , one can get the solution in agreement with38,

Solution in the Fourier‑time space
Unfortunately, the inverse Laplace transform of Eq. (25) is problematic. However, we can invert the Laplace 
transform from Eq. (15) following Langlands39. We rewrite Eq. (15) as

(19)lim
R→∞

∮

CR

e−ikx dk

(k −√
ai)(k +√

ai)
=

∞
∫

−∞

e−ikx dk

(k +√
ai)(k −√

ai)
.

(20)resk=−√
ai

[

e−ikx

(k +√
ai)(k −√

ai)

]

= − e−
√
ax

2
√
ai

.

(21)

∞
∫

−∞

e−ikx dk

(k +√
ai)(k −√

ai)
= πe−

√
ax

√
a

, x > 0.

(22)ρ̃(x, s) = sα−1e−
√
ax

2
√
a

, x > 0.

(23)ρ̃(x, s) = sα−1e
√
ax

2
√
a

, x < 0.

(24)ρ̃(x, s) = sα−1e−
√
a|x|

2
√
a

.

(25)ρ̃(x, s) = sα−1

2(sα + 1)1/2
exp

[

−|x|(sα + 1)1/2
]

.

(26)cDα
t ρ = ∂2xρ,

(27)ˆ̃ρ(k, s) = sα−1

sα + k2
.

(28)ρ̃(x, s) = 1

2
sα/2−1 exp

[

−|x|sα/2
]

.

a)

×−
√
ai

R−R

Re k

Im k

O

CR

b)

×√
ai

R−R Re k

Im k

O

CR

Figure 1.   The integration contours for (a) x > 0 and (b) x < 0 , and poles of the integrand on the left-hand side 
for Eq. (17).
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Now by expanding the second fraction we have

From40 we have the following Laplace transform

where

is the Mittag–Leffler function. Thus, using Eq. (31) with a = k2 and β = 1 , we can invert the Laplace transform 
in (30) to get

The derivatives of the Mittag–Leffler function can be expressed in terms of the Fox’s H-function, which is 
defined by means of a Mellin-Barnes type integral in the following manner39,41–43:

with h(s) given by the ratio of products of Gamma functions:

m, n, p, q are integers satisfying ( 0 � n � p , 1 � m � q ), z  = 0 , and z−s = exp
[

−s(ln |z| + i arg z)
]

 , Ai ,Bj ∈ R+ , 
ai , bj ∈ R or C with (i = 1, 2, . . . , p) , (j = 1, 2, . . . , q) . The contour of integration L is a suitable contour sep-
arating the poles −(bj + ν)/Bj , ( j = 1, . . . ,m ; ν = 0, 1, 2, . . . ), of the gamma functions Ŵ(bj + Bjs) from 
the poles (1− a� + k)/A� , ( � = 1, . . . , n ; k = 0, 1, 2, . . . ) of the gamma functions Ŵ(1− a� − A�s) , that is 
A�(bj + ν) �= Bj(a�−k−1) . An empty product in 35, if it occurs, is taken to be one.

Detailed and comprehensive accounts of the matter are available in Mathai, Saxena, and Haubold43, Mathai 
and Saxena44, and Kilbas and Saigo45. Back to Eq. (33), we have:

knowing that the generalized Mittag–Leffler function in terms of the Mellin–Barnes integral representation is 
given by25:

and thus:

The two-parameter Mittag–Leffler (Eq. 32) is obtained by setting γ = 1 in Eq. (38). With this one can rewrite 
Eq. (33) in the form

Solution in the real‑time space
Now we invert the Fourier transform in Eq. (39). To do this, we note that ρ̂(k, t) is an even function of k. For an 
even function f̂ (k) = f̂ (−k) , the Fourier transform reduces to the Fourier cosine transform,

(29)ˆ̃ρ(k, s) = sα−1

sα + 1+ k2
= sα−1

sα + k2
1

1+ 1
sα+k2

.

(30)ˆ̃ρ(k, s) = sα−1

sα + k2

∞
∑

r=0

(−1)r

(sα + k2)r
=

∞
∑

r=0

(−1)r sα−1

(sα + k2)r+1
.

(31)L

{

tαr+β−1E
(r)
α,β(−atα); s

}

= r!sα−β

(sα + a)r+1
,

(32)Eα,β(z) =
∞
∑

k=0

zk

Ŵ(αk + β)

(33)ρ̂(k, t) =
∞
∑

r=0

(−1)r tαr

r! E(r)α (−k2tα).

(34)Hm,n
p,q (z) = Hm,n

p,q

[

z|(ap ,Ap)

(bq ,Bq)

]

= Hm,n
p,q

[

z|(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]

= 1

2π i

∫

L
h(s)z−sds

(35)h(s) =
∏m

j=1 Ŵ(bj + Bjs)
∏n

j=1 Ŵ(1− aj − Ajs)
∏p

j=n+1 Ŵ(aj + Ajs)
∏q

j=m+1 Ŵ(1− bj − Bjs)

(36)E
(r)
α,β(−z) = H1,1

1,2

[

z
∣

∣

(−r, 1)
(0, 1), (−αr,α)

]

,

(37)E
γ
α,β(z) =

1

Ŵ(γ )

1

2π i

∫

�

Ŵ(−ξ)Ŵ(γ + ξ)(−z)ξdξ

Ŵ(αξ + β)

(38)E
γ
α,β(z) = H1,1

1,2

[

z
∣

∣

(1− γ , 1)
(0, 1), (1− β ,α)

]

.

(39)ρ̂(k, t) =
∞
∑

r=0

(−1)r tαr

r! H1,1
1,2

[

k2tα
∣

∣

(−r, 1)
(0, 1), (−αr,α)

]

.
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The inverse Fourier cosine transform can be calculated using the following relation for the cosine transform of 
the H-function46

Using the latter with ρ = 1 , a = tα , µ = 2 , and m, n, p, q, (ap,Ap) and (bq,Bq) coefficients defined in Eq. (39), 
one can invert the Fourier transform in Eq. (39) to obtain

Next, using the following reduction formula42

we can simplify Eq. (42) to

Finally, using the property of the H-function42,

with σ = −1/2 , we come to

Together, Eqs. (15), (24), (39) and (46) provide the solution to the time fractional equation (12) in four dif-
ferent spaces with respect to the density arguments, namely x ↔ k , and t ↔ s.

Case with 0 < α < 1 , 0 < β < 2

The solution to the bi-fractional Eq. (3) with 0 < α < 1 , 0 < β < 2 , θ = 0 in real-time space can be obtained 
similarly to the time-fractional equation (12). The Laplace-Fourier transformations of Eq. (3) with the condi-
tions given in (4) is:

The result for ρ(x, t) is found to be:

Using Eq. (45) with σ = −1/β , one can rewrite (48) as

Numerical results
We calculate the obtained solutions for ρ(x, t) governed by Eq. (3) with the boundary and initial conditions 
given by (4) for the four cases of (i) normal electrodiffusion ( α = 1 , β = 2 ), (ii) time-fractional electrodiffusion 
( 0 < α < 1 , β = 2 ), (iii) space-fractional electrodiffusion ( α = 1 , 0 < β < 2 ) and (iv) bi-fractional electrodiffu-
sion ( 0 < α < 1 , 0 < β < 2 ) as given by Eq. (49). We fixed the upper limit of the summation to five terms, which 
is deemed sufficient to represent well enough the overall behavior of the variable ρ(x, t) . The Fox H-function 

(40)f (x) = 1

2π

∞
∫

−∞

f̂ (k)e−ikx dk = 1

π

∞
∫

0

f̂ (k) cos(kx) dk.

(41)

∞
∫

0

kρ−1 cos(kx)Hm,n
p,q

[

akµ
∣

∣

(ap,Ap)

(bq,Bq)

]

dk = π

xρ
Hn+1,m
q+1,p+2

[

xµ

a

∣

∣

(1− bq,Bq), (
1
2 +

ρ
2 ,

µ
2 )

(ρ,µ), (1− ap,Ap), (
1
2 +

ρ
2 ,

µ
2 )

]

.

(42)

ρ(x, t) = 1

π

∞
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(−1)r tαr

r!

∞
∫

0

cos(kx)H1,1
1,2

[

k2tα
∣

∣

(−r, 1)
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]

dk
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|x|

∞
∑
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(−1)r tαr
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3,3
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x2

tα

∣

∣

(1, 1), (1+ αr,α), (1, 1)
(1, 2), (1+ r, 1), (1, 1)

]

.

(43)Hm,n
p,q

[

z
∣

∣

(a1,A1), . . . , (ap,Ap)

(b1,B1), . . . , (bq−1,Bq−1), (a1,A1)

]

= Hm,n−1
p−1,q−1

[

z
∣

∣

(a2,A2), . . . , (ap,Ap)

(b1,B1), . . . , (bq−1,Bq−1)

]

,

(44)ρ(x, t) = 1

|x|

∞
∑

r=0

(−1)r tαr

r! H2,0
2,2

[

x2

tα

∣

∣
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]

.

(45)zσHm,n
p,q
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z
∣

∣
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]
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p,q
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z
∣

∣
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, σ ∈ C,
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∞
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(−1)r tα(r−
1
2 )

r! H2,0
2,2
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x2

tα

∣

∣

(1+ α[r − 1
2 ],α), (

1
2 , 1)

(0, 2), (r + 1
2 , 1)

]

.

(47)ˆ̃ρ(k, s) = sα−1

sα + 1+ kβ
.

(48)ρ(x, t) = 1

|x|

∞
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tα

∣
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.

(49)ρ(x, t) =
∞
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β
)

r! ×H2,1
3,3
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|x|β
tα

∣

∣

(1− 1
β
, 1), (1+ α[r − 1

β
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β
2 )
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β
, 1), ( 12 ,
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can be calculated numerically using a simple rectangular approximation of the integrals47. The function ρ(x, t) 
is calculated for x ∈ [−1,−δ) ∪ (δ, 1] and t ∈ (ε, 0.25] , where δ > 0 and ε > 0 are utilized to cut small locality 
around x = 0 , t = 0 , where the Fox H-function and ρ(x, t) are not defined. We remind again that ρ(x, t) described 
by Eq. (3) is a generalization of the integer-order Debye–Falkenhagen approximation (Eq. (2)), whose validity 
is limited to the regime of small applied potentials.

First we consider the known integer-order case of α = 1 , β = 2 (i.e. Eq. (2)). It is clear that at the limit α → 1 
we obtain from Eq. (46) the following expression for ρ(x, t):

The same can be found from Eq. (49) for α → 1 , β → 2 . We recognize that the first term in Eq. (50) corresponds 
to the fundamental solution of the standard Fick’s diffusion equation ∂tρ = ∂2xρ . Solutions to the integer-order 
case of Debye–Falkenhagen equation for different conditions has been previously provided mainly via numerical 
simulations and approximations (e.g. by using Padé approximation)4,48,49, but here by using tools from fractional 
calculus we give an analytical expression as an infinite series of the Fox H-function. Plots of ρ(x, t) for this case 
as a function of x ( 0.01 < x < 1 ) for the different values of t = 0.01 , 0.1, 0.5 (in log-linear scale), and as a func-
tion of t ( 0.01 < t < 1 ) for the different values of x = 0.01 , 0.1, 0.5 (in linear-linear scale) are shows in Fig. 2a,b 
respectively. Figure 2c is the contour plot of ρ(x, t) depicting its spatiotemporal dynamics. The solution depict-
ing concentrations is always positive. It is an even function of x and decays to zero for large values of |x|. It also 
decays to zero for large values of t.

For the time-fractional anomalous case of 0 < α < 1 , β = 2 , we verify that Eq. (49) reduces to Eq. (46). 
Similar to the previous case, plots of ρ(x, t) as a function of x, as a function of t, and as a function of both x and 
t for α = 0.8 , β = 2 are shown in Fig. 3.

For the space-fractional anomalous case of α = 1 , 0 < β < 2 , Eq. (49) simplifies to:

which is plotted in Fig. 4 for the case of α = 1 , β = 1.8.
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2
√
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∣
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∣
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2 )

]

(a) (b) (c)

Figure 2.   Plots of ρ(x, t) given by Eq. (49) with α = 1.0 , β = 2.0 as a function of (a) x for t = 0.01 , 0.1, 0.5, (b) 
t for x = 0.01 , 0.1, 0.5 and (c) x and t (contour plot).

(a) (b) (c)

Figure 3.   Plots of ρ(x, t) given by Eq. (49) with for α = 0.8 , β = 2.0 as a function of (a) x for t = 0.01 , 0.1, 0.5, 
(b) t for x = 0.01 , 0.1, 0.5 and (c) x and t (contour plot).
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Finally, in Fig. 5 we show the variation of log ρ(x, t) vs. both variables x and vs. t for the general case of 
two fractional parameters, α = 0.8 and β = 1.8 . The propagating quantity ρ(x, t) tends to accelerate as x and t 
increase, and thus the representation in log scale.

Conclusion
The traditional mathematical tools used for the modeling of transport in electrified porous structures in contact 
with an electrolyte are based on integer-order differential equations, which are more suited for homogeneous 
systems with planar geometries. When complex structures and coupled phenomena are involved, it is often 
required to further complement the existing models by additional approximations and assumptions which makes 
the problem even more difficult to solve. The theoretical and numerical results presented in this work show the 
possibilities that come with the use of both time and space bi-fractional-order derivatives for the case of the 
Debye–Falkenhagen equation, which is a simple and idealized model for electrodiffusion at low applied voltages. 
Eq. (49), with its extra two degrees of freedom α and β , compared to the integer-order model (Eq. (50)) is capable 
of deforming the spatiotemporal dynamics of the propagating quantity ρ(x, t) in ways to account for subdiffusive 
and superdiffusive transports. While the physical interpretations of the fractional parameters remains unclear 
and need further studies, the mathematical solutions to this general problem can provide useful insights in 
anomalous transports in heterogeneous media such as membranes, protein channels and electrochemical devices.

Data availability
All data generated or analysed during this study are included in this published article

Received: 30 July 2023; Accepted: 30 May 2024

References
	 1.	 Xin, J. Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000).
	 2.	 Janssen, M. Curvature affects electrolyte relaxation: Studies of spherical and cylindrical electrodes. Phys. Rev. E 100, 042602 (2019).
	 3.	 Janssen, M. & Bier, M. Transient dynamics of electric double-layer capacitors: Exact expressions within the Debye–Falkenhagen 

approximation. Phys. Rev. E 97, 052616 (2018).
	 4.	 Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004).

(a) (b) (c)

Figure 4.   Plots of ρ(x, t) given by Eq. (49) with for α = 1.0 , β = 1.8 as a function of (a) x for t = 0.01 , 0.1, 0.5, 
(b) t for x = 0.01 , 0.1, 0.5 and (c) x and t (contour plot).

(a) (b) (c)

Figure 5.   Plots of log(ρ(x, t)) given by Eq. (49) with for α = 0.8 , β = 1.8 as a function of (a) x for t = 0.01 , 0.1, 
0.5, (b) t for x = 0.01 , 0.1, 0.5 and (c) x and t (contour plot).



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12886  | https://doi.org/10.1038/s41598-024-63579-7

www.nature.com/scientificreports/

	 5.	 Singh, M. B. & Kant, R. Debye–Falkenhagen dynamics of electric double layer in presence of electrode heterogeneities. J. Electroa‑
nal. Chem. 704, 197–207 (2013).

	 6.	 Singh, M. B. & Kant, R. Theory for anomalous electric double-layer dynamics in ionic liquids. J. Phys. Chem. C 118, 8766–8774 
(2014).

	 7.	 Maibam Birla Singh and Rama Kant. Theory of anomalous dynamics of electric double layer at heterogeneous and rough electrodes. 
J. Phys. Chem. C 118, 5122–5133 (2014).

	 8.	 Moya, A. A. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface. Phys. Chem. 
Chem. Phys. 17, 5207–5218 (2015).

	 9.	 Wheatcraft, S. W. & Meerschaert, M. M. Fractional conservation of mass. Adv. Water Resour. 31, 1377–1381 (2008).
	10.	 Allagui, A., Benaoum, H., Elwakil, A. S. & Alshabi, M. Extended RC impedance and relaxation models for dissipative electrochemi-

cal capacitors. IEEE Trans. Electron Devices 69, 5792–5799 (2022).
	11.	 Mainardi, F., Luchko, Y. & Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. 

Anal. 4, 153–192 (2001).
	12.	 Allagui, A. et al. Fractional-order electric double-layer capacitors with tunable low-frequency impedance phase angle and energy 

storage capabilities. Appl. Phys. Lett. 116, 013902 (2020).
	13.	 Allagui, A., Zhang, D. & Elwakil, A. S. Short-term memory in electric double-layer capacitors. Appl. Phys. Lett. 113, 253901–5 

(2018).
	14.	 Allagui, A. & Elwakil, A. S. On the theory and application of the fractional-order Dirac-delta function II Express Briefs. IEEE 

Trans. Circuits Syst. 2023, 1–6 (2023).
	15.	 Allagui, A., Zhang, D., Khakpour, I., Elwakil, A. S. & Wang, C. Quantification of memory in fractional-order capacitors. J. Phys. 

D 53, 02LT03 (2020).
	16.	 Allagui, A. et al. Review of fractional-order electrical characterization of supercapacitors. J. Power Sources 400, 457–467 (2018).
	17.	 Tarasov, V. E. General non-local continuum mechanics: Derivation of balance equations. Mathematics 10, 1427 (2022).
	18.	 Mainardi, Francesco. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (World 

Scientific, 2022).
	19.	 Henry, B. I., Langlands, T. A. M. & Straka, P. An introduction to fractional diffusion. In Complex Physical, Biophysical and Econo‑

physical Systems 37–89 (World Scientific, 2010).
	20.	 Saichev, A. I. & Zaslavsky, G. M. Fractional kinetic equations: Solutions and applications. Chaos 7, 753–764 (1997).
	21.	 Gorenflo, R., Iskenderov, A. & Luchko, Y. Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. 

Anal. 3, 75–86 (2000).
	22.	 Bologna, M., West, B. J. & Grigolini, P. Renewal and memory origin of anomalous diffusion: A discussion of their joint action. 

Phys. Rev. E 88, 062106 (2013).
	23.	 Bologna, M. & Svenkeson, A. Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional 

differential equations with time-dependent coefficients. J. Comput. Phys. 293, 297–311 (2015).
	24.	 Kosztołowicz, T. & Metzler, R. Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Phys. 

Rev. E 102, 032408 (2020).
	25.	 Saxena, R. K., Mathai, A. M. & Haubold, H. J. Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. 

Space Sci. 290, 299–310 (2004).
	26.	 Saxena, R. K., Mathai, A. M. & Haubold, H. J. Space-time fractional reaction-diffusion equations associated with a generalized 

Riemann-Liouville fractional derivative. Axioms 3, 320–334 (2014).
	27.	 Haubold, H. J., Mathai, A. M. & Saxena, R. K. Further solutions of fractional reaction-diffusion equations in terms of the h-function. 

J. Comput. Appl. Math. 235, 1311–1316 (2011).
	28.	 Saxena, R. K., Mathai, A. M. & Haubold, H. J. Distributed order reaction-diffusion systems associated with caputo derivatives. J. 

Math. Phys. 55, 083519 (2014).
	29.	 Saxena, R. K., Mathai, A. M. & Haubold, H. J. Computational solutions of unified fractional reaction-diffusion equations with 

composite fractional time derivative. Commun. Nonlinear Sci. Numer. Simul. 27, 1–11 (2015).
	30.	 Hilfer, R. Fractional time evolution. In Applications of Fractional Calculus in Physics 87–130 (World Scientific, Singapore, 2000).
	31.	 Costa, F. S., De Oliveira, E. C. & Plata, A. R. G. Fractional diffusion with time-dependent diffusion coefficient. Rep. Math. Phys. 

87, 59–79 (2021).
	32.	 Costa, F. S., Oliveira, D. S., Rodrigues, F. G., Capelas, E. & de Oliveira, E. C. The fractional space-time radial diffusion equation in 

terms of the fox’s h-function. Physica A 515, 403–418 (2019).
	33.	 George, A.  Solving Frontier Problems of Physics: The Decomposition Method, Vol. 60 (Springer Science & Business Media, 2013).
	34.	 He, J.-H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).
	35.	 Liao, S. Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 

1186–1194 (2005).
	36.	 Djordjevic, V. D. & Atanackovic, T. M. Similarity solutions to nonlinear heat conduction and burgers/korteweg-devries fractional 

equations. J. Comput. Appl. Math. 222, 701–714 (2008).
	37.	 Costa, F. S., Marao, J. A. P. F., Soares, J. C. A. & de Oliveira, E. C. Similarity solution to fractional nonlinear space-time diffusion-

wave equation. J. Math. Phys. 56, 033507 (2015).
	38.	 Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 

(2000).
	39.	 Langlands, T. A. M. Solution of a modified fractional diffusion equation. Physica A 367, 136–144 (2006).
	40.	 Podlubny, I.  Fractional Differential Equations (Academic Press, 1999).
	41.	 Fox, C. The g and h functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395–429 (1961).
	42.	 Mathai, A. M., Saxena, R. K. & Haubold, H. J.  The H-Function. Theory and Applications. (Springer, 2010).
	43.	 Mathai, A. M., Saxena, R. K. & Haubold, H. J. The H-Function: Theory and Applications (Springer Science & Business Media, 2009).
	44.	 Mathai, A. M. et al.The H-Function with Applications in Statistics and Other Disciplines (Wiley, 1978).
	45.	 Saigo, M. et al.H-Transforms: Theory and Applications (Chapman & Hall; CRC, 2004).
	46.	 Saxena, R., Mathai, A. & Haubold, H. Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 

290, 299–310 (2004).
	47.	 Alhennawi, H. R., El Ayadi, M. M. H., Ismail, M. H. & Mourad, H.-A.M. Closed-form exact and asymptotic expressions for the 

symbol error rate and capacity of the H-function fading channel. IEEE Trans. Veh. Technol. 65, 1957–1974 (2016).
	48.	 Feicht, S. E., Frankel, A. E. & Khair, A. S. Discharging dynamics in an electrolytic cell. Phys. Rev. E 94, 012601 (2016).
	49.	 Stout, R. F. & Khair, A. S. Diffuse charge dynamics in ionic thermoelectrochemical systems. Phys. Rev. E 96, 022604 (2017).

Author contributions
A.A. and H.B. contributed to the development of the idea behind this work. A.A. and D.Y. derived the mathemati-
cal expressions. A.A., G.P., A.P. and D.Y. discussed and analyzed the results. A.A. and D.Y. wrote the manuscript. 
All co-authors reviewed the manuscript and provided feedback.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12886  | https://doi.org/10.1038/s41598-024-63579-7

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Fundamental solution of the time-space bi-fractional diffusion equation with a kinetic source term for anomalous transport
	Model
	Analytical solutions
	Case with  , 
	Solution in the real-Laplace space
	Solution in the Fourier-time space
	Solution in the real-time space

	Case with  , 

	Numerical results
	Conclusion
	References


