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Constraint optimization 
of an integrated production 
model utilizing history matching 
and production forecast 
uncertainty through the ensemble 
Kalman filter
Mehdi Fadaei , Mohammad Javad Ameri * & Yousef Rafiei 

The calibration of reservoir models using production data can enhance the reliability of predictions. 
However, history matching often leads to only a few matched models, and the original geological 
interpretation is not always preserved. Therefore, there is a need for stochastic methodologies for 
history matching. The Ensemble Kalman Filter (EnKF) is a well-known Monte Carlo method that 
updates reservoir models in real time. When new production data becomes available, the ensemble of 
models is updated accordingly. The initial ensemble is created using the prior model, and the posterior 
probability function is sampled through a series of updates. In this study, EnKF was employed to 
evaluate the uncertainty of production forecasts for a specific development plan and to match 
historical data to a real field reservoir model. This study represents the first attempt to combine EnKF 
with an integrated model that includes a genuine oil reservoir, actual production wells, a surface 
choke, a surface pipeline, a separator, and a PID pressure controller. The research optimized a real 
integrated production system, considering the constraint that there should be no slug flow at the 
inlet of the separator. The objective function was to maximize the net present value (NPV). Geological 
data was used to model uncertainty using Sequential Gaussian Simulation. Porosity scenarios were 
generated, and conditioning the porosity to well data yielded improved results. Ensembles were 
employed to balance accuracy and efficiency, demonstrating a reduction in porosity uncertainty due 
to production data. This study revealed that utilizing a PID pressure controller for the production 
separator can enhance oil production by 59% over 20 years, resulting in the generation of 2.97 million 
barrels of surplus oil in the field and significant economic gains.

Keywords  History matching, Uncertainty, Constraint optimization, Integrated model, Ensemble Kalman 
filter

For the effective management of modern oil and gas fields, it is essential to update simulation models by incor-
porating production data and geological parameterization. It is crucial to update simulation cells in a way that 
aligns with geological assumptions to maintain a coherent model. The management is increasingly requesting 
a probabilistic evaluation of different development scenarios. Reservoir models generate distribution functions 
for key production metrics, such as total oil production, which reflect the uncertainty in reservoir knowledge. 
It is necessary to regularly and quickly update the models to make well-informed decisions based on the avail-
able data.

A separator is an apparatus utilized in oil well operations to separate the oil, water, and gas constituents. 
The extent of phase separation corresponds to the degree of separation achieved among these constituents. The 
efficiency of the separator and the magnitude of phase separation directly impact the amount of oil that can be 
stored in the stock tank.
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During oil production, the reservoir’s pressure decreases, resulting in alterations in the hydrocarbon compo-
nents. To achieve enhanced phase separation, it is crucial to appropriately adjust the dimensions of the separator. 
However, modifications to the separator’s dimensions are not feasible during production. Therefore, adjusting 
the separator’s pressure becomes essential in order to optimize phase separation. Additionally, this practice 
prevents issues such as carry-over, foaming, and emulsion formation, which can negatively impact the produc-
tion process and pose safety hazards. Consequently, maintaining the separator pressure at the desired value at 
all times is of utmost importance.

The pipelines are subject to various flow regimes, one of which is slug flow. This flow pattern induces pressure 
and flow rate fluctuations, which can influence the performance of the separator and its associated equipment1. 
Slug flow is a complex phenomenon that can be further categorized into distinct subtypes based on the charac-
teristics of the gas and liquid phases, including slug length, slug frequency, and slug velocity1.

This study uses the EnKF technique to calibrate the actual oil field model and determine the level of uncer-
tainty reduction by assimilating production data. Different ensembles are used to assess the efficiency of EnKF 
and measure the uncertainty in production predictions with the help of an updated ensemble. This research 
represents the first application of EnKF to an actual reservoir for history matching and uncertainty analysis of 
production forecasts. The EnKF methodology is applied in this study to an integrated production model using 
a real oil reservoir.

One of the innovations of this study is the implementation of the Ensemble Kalman Filter (ENKF) method 
to assess uncertainty in production forecasting. Additionally, this study introduces the integration of the ENKF 
method with the integrated production model for the first time in the oil industry. In the integrated production 
model, the ENKF prediction model simulates the behavior of the actual oil reservoir. The models of the well, 
surface choke, pipeline, and surface separator are interconnected to create a cohesive integrated model. This 
research proposes three algorithms, as depicted in Fig. 1, to optimize the integrated model. Algorithm I has a 
single optimization constraint, which is the absence of slug flow before the separator. Algorithm I is employed 
in the PID controller separator model.

In Algorithm II, there are no additional constraints besides the optimization process. It is also utilized in the 
PID controller separator model. However, in Algorithm III, there are no constraints in the optimization process, 
and no PID controller is employed in the separator model. The problem of integrating different sub-models into 
a unified and coherent integrated model for production optimization is recognized as a promising approach. 
Furthermore, the three algorithms presented in Fig. 1 are compared in terms of functionality and efficiency to 
enhance oil production in the storage tank and eliminate the slug flow regime. Identifying the most effective 
model that can increase oil storage and simultaneously eliminate the slug flow regime before the separator 
represents a novel approach. Moreover, this research introduces the constraint optimization of the integrated 
model and the simultaneous adjustment of the ENKF method with the separator PID controller, which is a 
unique contribution in its field.

This study is divided into three sections. The first section focuses on history matching, the second section 
on assessing uncertainty in production forecasts, and the third section on production estimation over 20 years 
using three algorithms. These algorithms are integrated models that include the reservoir, wells, chokes, surface 
pipelines, and separator with a PID pressure controller. In this section, we will compare our research to similar 
studies and highlight the benefits of our study.

The Ensemble Kalman Filter (EnKF) is a Monte Carlo-based technique that is commonly employed for 
calibrating oceanographic models. It is widely utilized for historical matching and uncertainty estimation in 
reservoir simulation due to its essential features. EnKF is especially appropriate for real-time simulations as it 
combines generated data with available equivalent models2.

EnKF uses a collection of Gaussian models that are updated linearly to store the most recent production data. 
EnKF can be utilized in conjunction with any reservoir simulator that can restart, and it does not necessitate 
gradients for history-matching or sensitivity coefficients3.

EnKF utilizes a set of Gaussian models that are linearly updated to store the latest production data. It can be 
used alongside any reservoir simulator that can restart, and it does not require gradients for history-matching 
or sensitivity coefficients3.

Nasima et al.4 conducted a study in which they utilized the ENKE method to update both static parameters, 
such as porosity and permeability, and dynamic variables to align with real-time production data. The Norne 
Oil Field was divided into three ensembles, specifically referred to as Case A, Case B, and Case C. Following the 
simulation using EnKF, all three cases yielded precise porosity ranges.

In this study, we utilized a real reservoir model and combined the reservoir, well, chokes, pipeline, and sepa-
rator sub-models into a cohesive production system. Additionally, we employed three algorithms, considering 
certain constraints, to optimize production to maximize the NPV and eliminate slug flow before the separator.

Byeongcheol et al.5 conducted a study that demonstrated the utility of ensemble-based analyses in compar-
ing equiprobable scenarios of reservoir models. The researchers proposed a specific preprocessing method for 
selecting good initial models, which effectively reduced the ensemble size. Subsequently, they employed EnKF to 
stochastically predict production performances. The study specifically focused on two 3D models and found that 
EnKF yielded reliable assimilation results while significantly reducing computation time. To create a production 
system, a realistic reservoir model was combined with models of the well, chokes, pipeline, and separator. In 
addition, three algorithms with specific constraints were utilized to optimize production, maximize net present 
value (NPV), and eliminate slug flow before the separator.

Rajabi-Kochi et al.6 proposed an integrated model for the PUNQ-S3 reservoir located in the North Sea. 
The authors conducted a sensitivity analysis to determine the key parameters affecting the target functions. 
By employing a two-level Plackett–Burman design, they were able to identify 16 parameters with the highest 
impact. Subsequently, they narrowed this selection down to seven variables that exhibited the greatest influence 
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on the target functions, namely net present value, cumulative oil production, and cumulative water production. 
To establish the proxy model, a three-level Box-Behnken experimental design was employed for each target 
function. This design effectively took into account the interactions between the variables. The suitability and 
reliability of the proxy model for each target function were validated based on the decision variables. Lastly, a 
multi objective optimization was carried out with the objective of maximizing net present value and cumulative 
oil production, while minimizing cumulative water production. This optimization process utilized a parameter 
known as composite desirability.

Figure 1.   Description of the EnKF workflow with integrating surface facilities. The model state vector, md, 
controls pressure and saturation, etc., and the model parameter vector, ms, controls porosity and permeability.
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AlRassas et al.7 propose a new hybrid intelligence time series model for forecasting oil production in two 
distinct oil fields in China and Yemen. This model, named AO-ANFIS, is a modified version of the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) that incorporates a novel optimization algorithm called the Aquila 
Optimizer (AO). The AO algorithm draws inspiration from the behavior of Aquila in nature. The performance 
of the AO-ANFIS model was evaluated using real-world datasets obtained from local partnerships. Additionally, 
a comprehensive competitor analysis was conducted to gain insights into the market landscape. A comparative 
analysis was performed between the AO-ANFIS model, the traditional ANFIS model, and several modified 
ANFIS models that utilize different optimization algorithms. The numerical results and statistics provide evidence 
of the superiority of the AO-ANFIS model over both the traditional ANFIS model and the modified models. 
Furthermore, the results demonstrate that the AO algorithm significantly enhances the prediction accuracy of 
the ANFIS model. Consequently, the AO-ANFIS model can be regarded as an efficient tool for analyzing time 
series data.

Akter et al.8 discussed the challenges of using the EnKF algorithm for joint state-parameter estimation. They 
made two modifications to the algorithm and created a benchmark problem, known as the ‘tank series model’, to 
test its effectiveness. The researchers then applied a similar approach to a nonlinear two-dimensional reservoir 
that was undergoing water flooding operation to assess its performance in history matching. Additionally, they 
conducted a sensitivity analysis to further evaluate the algorithm’s effectiveness. In our study, we used a realistic 
reservoir model and integrated it with models of the well, chokes, pipeline, and separator to construct a unified 
production system. Furthermore, we utilized three algorithms with specific constraints to optimize production, 
maximize the net present value (NPV), and eliminate slug flow before the separator.

Xuechen et al.9 introduced a novel framework that employs a Bidirectional Gated Recurrent Unit (Bi-GRU) 
and Sparrow Search Algorithm (SSA) to improve the precision of oil rate prediction. The Bi-GRU effectively 
integrates historical and future information within production sequences and associated characteristics. The SSA 
is employed to optimize the hyperparameters of the Bi-GRU model. In order to evaluate the feasibility, reliability, 
and efficiency of the proposed approach, three scenarios were conducted, consisting of an ideal single well from 
the simulation model, an actual single well under varying production constraints, and multiple actual wells. The 
performance of the model was compared to that of traditional decline curve analysis, conventional time series 
methods, and one-way recurrent neural networks. The findings indicate that the proposed approach surpasses 
the others in terms of accuracy and reliability.

In their study, Wang et al.10 conducted research on the development of deep belief network (DBN) models to 
accurately and effectively predict the production performance of unconventional wells. To ensure the construc-
tion of a comprehensive training database, the researchers ran 815 numerical simulation cases and employed the 
Bayesian optimization algorithm to optimize the hyperparameters of the network model. The results revealed 
that the DBN models surpassed traditional machine-learning techniques, such as back-propagation (BP) neu-
ral networks and support vector regression (SVR), in terms of prediction accuracy and generalization ability. 
Moreover, Wang et al.10 utilized the trained DBN model to optimize fracturing design, yielding impressive 
outcomes. The model demonstrated instantaneous and accurate predictions of the production performance of 
unconventional wells, and its reusability establishes it as a valuable tool for optimizing fracturing designs. This 
research lays a solid foundation for anticipating the production performance of unconventional reservoirs and 
provides valuable insights into the development of data-driven models for energy conversion and utilization.

Liu et al.11 developed a model that efficiently predicts oil production by employing an ensemble empirical 
mode decomposition (EEMD)-based Long Short-Term Memory (LSTM) learning paradigm. In their study, the 
researchers initially divided the original oil production series into a training set and a test set. The test set data 
was progressively integrated into the training set and decomposed using EEMD to obtain multiple intrinsic mode 
functions (IMFs). The stability of these IMFs was assessed based on their means and curve similarity, determined 
through Dynamic Time Warping (DTW). The most stable IMFs were subsequently chosen as predictor variables 
for machine learning. By considering the trend and contextual information of the production series, LSTM was 
employed to establish a predictive model for production forecasting. The optimal hyperparameters for LSTM 
were determined utilizing the Genetic Algorithm (GA). To validate and evaluate the proposed model, data from 
two real oilfields in China were utilized. The empirical results demonstrated that the proposed approach yielded 
extremely accurate production forecasts.

Chen et al.12 proposed an efficient workflow for evaluating the uncertainty of optimal well rates in waterflood 
problems. Their research is highly commendable and presents several innovative contributions. Specifically, they 
developed a flow feature clustering method using streamline and unsupervised machine learning techniques 
to reduce the number of geologic realizations required for representing geologic uncertainty. This approach 
significantly enhances the workflow’s efficiency.

In their study, Chen et al.12 employed a set of historical production and injection data. Initially, they generated 
an ensemble of history-matched geologic realizations using the ensemble smoother with multiple data assimila-
tion (ESMDA) technique. Subsequently, they utilized streamline time of flight (TOF) and principal component 
analysis (PCA) to extract the flow features from all realizations. Based on these features, they employed the 
k-means clustering algorithm to derive a subset of realizations that represent the entire ensemble. Given the 
exceptional nature and comprehensiveness of Chen et al.’s12 work, this article aims to follow their methodology. 
Moreover, this research endeavors to incorporate the separator controller in the constraint optimization process 
to prevent the occurrence of slug flow regimes before the separator.

Ren et al.13 conducted a study on a waterflood field consisting of more than 1000 wells. They found that using 
modern field management techniques with full-fidelity 3D geo-cellular reservoir models posed computational 
challenges. To address this issue, Ren et al.13 developed a new flow-network data-driven model called GPSNet, 
which allowed for rapid history matching and optimization. The researchers utilized Ensemble Smoother with 
Multiple Data Assimilation (ESMDA) to minimize errors during the history matching process. Subsequently, 
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a best-matched candidate was selected for numerical optimization to maximize oil production rates, while 
also considering field conditions. The implementation of GPSNet in the waterflood field resulted in excellent 
history-matching outcomes at the field level, as well as satisfactory matches for key producers. Thus, the success-
ful application of GPSNet demonstrates its potential as a quick and reliable decision-making tool for reservoir 
management.

Ren et al.13 introduced an effective workflow for reservoir management in waterflood scenarios. Their research 
is highly commendable and offers several innovative contributions. Additionally, this study strives to integrate 
the separator controller into the constraint optimization process, aiming to prevent slug flow regimes prior to 
the separator and maximize total oil production in the stock tank.

The novelty of this study lies in its utilization of three algorithms simultaneously, each serving a specific pur-
pose: production optimization, slug flow removal, and production forecast uncertainty with ENKF. Algorithm 
I employs a separator equipped with a PID pressure controller and two constraints. These constraints aim to 
maximize the NPV (Net Present Value) and eliminate the slug flow regime before the separator. In contrast, 
Algorithm II focuses solely on maximizing the NPV, utilizing a separator with only one constraint. Lastly, 
Algorithm III does not feature a PID pressure controller nor any constraints for the separator. These algorithms 
encompass integrated models that encompass the actual oil reservoir, wells, chokes, surface pipelines, and a real 
oil field separator.

Modelling
This section presents a comprehensive explanation of integrated system modeling.

The ensemble Kalman filter (EnKF)
The EnKF is a statistical method used to solve inverse problems involving sequential time data. It achieves this 
by employing multiple-state vector realizations to quantify model uncertainty. Additionally, it uses a state vector 
to represent both observations and parameters during the modeling process.

In reservoir simulation, the EnKF updates a group of reservoir models sequentially as production data is 
assimilated. The reservoir’s state vector consists of three parameters: static factors, dynamic factors, and produc-
tion data. Static factors, such as porosity and permeability, remain constant throughout the simulations and are 
typically utilized in conventional history-matching processes. On the other hand, dynamic factors, including 
cell pressure, gas, and water saturation, and GOR, are used in flow simulations. Additionally, production rates, 
bottom-hole pressure, water cut, and gas–oil ratio observations are considered for these variables. Multiple 
realizations are used to model the state variables8.

At time tk , the jth ensemble member of the state vector is represented by yk,j . ms and md denote the static and 
dynamic variables respectively, while d is the production data vector. EnKF updates a group of reservoir models 
with current production data, resulting in an updated ensemble with explicit model uncertainty statistics. The 
filter has two processes: prediction and analysis. The prediction procedure involves the simulation of each model 
until the following observation date, whereas data assimilation and state variable updating are included in the 
analysis process. The state variables are progressed over time in the following way:

F is the forward model, yfk,j is the jth state vector after the kth forecast, and Ne is the number of ensemble 
members. The “f ” superscript represents the output of the simulator before the updating of the Kalman Filter. 
The matrix Hk, is the Jacobian matrix where H and K represent, respectively, the observation operator and the 
gain matrix and it does not need to be derived explicitly from the non-linear equations, so it is in the form14:

 0 is a Nd,k × (Ny,k − Nd,k) matrix with all 0’s as entries; I is a Nd,k × Nd,k identity matrix. The covariance matrix 
Cd,k is of dimension Nd,k × Nd,k and is diagonal if the production data errors are independent. The ensemble of 
forecasted results (yfk,j) can be used with the statistical method to estimate the covariance for the state variables 
at the time tk , which is defined by the matrix Cf

y,k
15.

The Kalman gain is a parameter that determines the significance of the measurements and current-state 
estimate in the filtering process. It can be adjusted to optimize the filter’s performance for specific requirements. 
Increasing the gain leads to a greater emphasis on the most recent measurements, resulting in a more responsive 
adaptation to them16. The Kalman gain Kk can be computed using the following equation, where yfk,j is the jth 
ensemble member of the forecasted state variable, which is a vector of dimension Ny,k.
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Assuming the Gaussian distribution of yk,j , update state vector with variance minimizing scheme using 
Kalman gain as a weighting matrix with observed production data, dk,j . In particular, the state variables are 
transformed by weighting them with the Kalman gain matrix, Kk.

The update to the forecast vector (u) is determined by the discrepancy between the simulated and observed 
production data. Larger discrepancies lead to greater adjustments to the original state vector. Afterward, the 
covariance matrix can be calculated.

The reservoir model was calibrated using the Kalman filter, incorporating one year of production data (the 
time resolution of the data is daily). The calibrated model was then integrated with the well, choke, pipeline, 
and separator model. The EnKF workflow was described, and sub-models for the reservoir, well, choke, surface 
pipeline, and separator were solved simultaneously, while also considering the constraint of no slug flow before 
the separator, as depicted in Fig. 1.

Update the covariance matrix for the current observations until new ones become available. Equations (5) 
and (6) apply to a Gaussian distribution when the errors in the model and observations are uncorrelated. The 
Ensemble Kalman Filter (EnKF) maintains spatial correlations by using initial variograms for nonlinear models. 
The original geological interpretation remains unchanged. Figure 1 shows three flowcharts that predict field 
production over 20 years.

The real oil reservoir
The paper discusses an onshore oil field in Iran that includes a 45-foot sand body and a shale layer cap as its actual 
oil reservoir. Initially, the reservoir was saturated with gas and had a thin layer of oil. A geophysical analysis was 
conducted, which identified the gas-oil contact in the field. This analysis involved three appraisal wells and two 
production wells. Initially, the gas-oil contact was found at a total depth of 8344.3 feet TVD, while the water–oil 
contact was identified at 9213 feet. The field also contained seven layers of sand with porosity log values ranging 
from 9 to 18%, and no vertical flow barriers were observed. A black-oil model was used to simulate the field.

The oil gravity, oil formation volume factor, oil viscosity, and undersaturated compressibility was 35° API, 
1.4 RB/STB, 0.29 cp and s 1.34 × 10−5 psia−1, respectively. Also, initial bubble point: 3885 psi, GOR: 1 Mscf/STB 
in oil rim. The simulation grid was 160 × 80 × 25 cubic cells, with a dimension of 390 ft × 390 ft × 390 ft. 304,000 
cells were active. The graph in Fig. 2 shows the relative permeability for gas–water and oil–water systems.

Baseline geological model
To accurately simulate the reservoir, it was necessary to determine the porosity values for the simulation grid. 
Three wells were used to create a baseline model with log porosity values. Kriging was then employed to expand 
these values throughout the reservoir. Figure 3 displays a representative layer’s Kriged porosity map.

The use of the same spacing for both geological and simulation grids facilitated the easy transfer of porosity 
values. Upon analyzing the data, we were able to establish a deterministic relationship between permeability 
and porosity. A permeability ratio of 1 was used to define a static parameter. Saturation levels are initiated at the 
endpoints of relative permeability.

Gaussian ensembles generation
The EnKF updates Gaussian models in an ensemble sequentially. SGSim generates simulation models in groups 
to produce correlated porosity fields using isotropic bi-dimensional variograms with a range of 4000 m. Unlike 
Yusuf et al.17, the porosity distribution in this study was restricted to observed porosities in appraisal wells.
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Figure 2.   The relative permeability curves for oil–water (left), and gas–oil (right).
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A total of 135 porosity fields were created using stochastic modeling for the EnKF. These fields were divided 
into three ensembles: A, B, and C, with 40, 100, and 130 members, respectively. The impact of different ensem-
ble sizes was assessed, with 100 members being the commonly used size based on experience in atmospheric 
sciences18.

A large ensemble is necessary to accurately estimate field uncertainty, while a smaller ensemble is sufficient 
for matching production data. For a reasonable history match, a small reservoir model found solutions with 
40 ensemble members8. On the other hand, a 100-member ensemble is enough for a reasonable history match 
in the PUNQ-S3 model. A small group is necessary for a balanced solution, while larger groups are needed to 
measure uncertainty in estimated static fields19,20.

Sub‑models correlations
The Duns and Ross correlation, along with its flowchart21, was utilized as a well sub-model. Its output is then 
directed to the choke sub-model, which determines critical and sub-critical flows. The output of the choke 
sub-model is subsequently employed as input for the pipeline sub-model22. The pipeline sub-model utilized the 
Beggs–Brill correlation23. The surface pipelines had a total length of 1335 m and a diameter of 4 inches.

To optimize the performance of the gas–liquid separator, a pressure controller is employed. This controller 
ensures that the separator operates under optimal conditions by estimating, adjusting, and controlling its per-
formance. This section presents the equations utilized by the separator pressure controller. Achieving optimal 
operational conditions for the separator is vital to maximizing the amount of oil in the stock tank. Key parameters 
include the oil formation volume factor, gas-oil ratio (GOR), and the weight of oil in the stock tank.

Equations of separator pressure PID controller
The PID controller equations for separator pressure control in this section were derived. Equation (8) relates gas 
pressure, inlet and outlet gas, and liquid flow rates24.

where qG, in is inlet gas volume flow rate 
[

BBL
Day

]

 , R is 8.314 J
mol.K  , P is separator pressure [psi], VG real gas velocity 

[

ft
S

]

 , MG is the molar weight of the gas 
[ g
mol

]

 , α is the Percentage of the valve opening, and T is the Gas temperature 
[F]. Equation (8) is a control equation and is simplified to Ẋ − a.X − b.U  = 0 The coefficients a, and b are 
qL,in−qL,out

VG
−

KvaRTρG
VGMGSG

 and RTρGVGMG
 respectively. A first-order filter was added to the PID controller for noise reduc-

tion. The optimal value of the filter’s time constant was determined through trial and error, as shown in Eq. (9).

The Ziegler–Nicholas optimization method improved the performance of the PID controller. Table 1 shows 
the control parameter values after using the tuning method.
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Figure 3.   Porosity map of oil field layer. Red indicates high porosity (up to 24%), and violet indicates very low 
(down to 2%).

Table 1.   Optimal values of the PID controller parameters.

State variable tc (s) KP Kd KI Tf

Pressure 5 0.075 − 0.2 4 2
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The control variables of the PID controller were the gas flow rate. The upper and lower limits of control 
signals were equal to 1 and 0 m3 s−1, respectively. The rate of change according to the activation dynamics was 
equal to 0.05 m3 s−2.

History matching the oil field by using ENKF
The coded EnKF was utilized to match the history of the oil reservoir model by employing state vectors that 
encompassed both static and dynamic variables. Data including bottom hole pressures, well production rates, 
WCT, and GOR were employed to estimate production. Ensembles A, B, and C were analyzed to assess the 
impact of changes in ensemble size. Moving forward, we will examine production data and discuss misfit errors.

Production data for EnKF based history matching
There were two vertical oil wells named A1 and A2 in the oil field. During the history-matching period, GOR 
and WCT targets were simulated for a year, and actual data was evaluated. Figures 4 and 5 display the history of 
both wells. Well A2 was mainly operated under dry conditions.

As mentioned previously, Fig. 5 displays the measured water contact (WCT) data for wells A1 and A2. High 
GOR values are generally considered to be more reliable than low GOR values. Similarly, trends that exhibit a 
consistent increase are typically more precise than those that oscillate. In the specific case of wells A1 and A2, it 
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Figure 5.   - The measured WCT data for wells A1 (represented by triangles) and A2 (represented by circles).

Table 2.   The used errors for observations weighting of the oil field. 1 GOR. 2 WCT.

Measuring parameter

Well name

A1 A2

Gas–oil-ratio1 0.35 MScf/STB for GOR values ≥ 5.5 MScf/STB, 0.25 MScf/STB for lower 
values

0.55 MScf/STB for GOR values gathered till day 290, 590% for later time 
values

Water cut2 0.45 for values outside the low-reliability time window, and 590% inside 0.0024 all the data
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can be observed that the GOR of well A1 is more reliable compared to that of well A2. However, it is important to 
note that the decline in the GOR of well A2, from 5 to 2.5 MScf/STB, and the extremely low WCT values (< 0.05) 
observed for well A1 between day 275 and day 340, were deemed to be unreliable. Table 2 presents the errors 
utilized for the weighting of observations in the oil field. For a more comprehensive understanding, please refer 
to Table 3, which displays the errors or standard deviations utilizing production data.

Table 3.   The average values of the objective functions for the three ensembles before and after EnKF 
integration.

Ensemble

Average objective function

Before EnKF After EnKF

A 568.4 153.9

B 596.5 135.4

C 598.4 136.6
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Figure 7.   Observed values for A1 GOR.
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Analysis of the results of EnKF history matching
EnKF was used for history matching on A, B, and C ensembles with 33 assimilation periods. EnKF effective-
ness can be assessed by observing the evolution of forecasted quantities like yfk,j in real-time scenarios. EnKF 
calibration improves short-term predictive value in real-time applications and ocean modeling. To evaluate the 
effectiveness, porosity fields from the previous assimilation step were used to simulate the history period for one 
year. Figures 6, 7, and 8 show the comparison of EnKF porosity in blue and original porosity in red for ensembles 
A-C, with observed data for Well A1 GOR.

The Ensemble Kalman Filter (EnKF) algorithm has shown promising results as a tool for history-matching. 
The assimilation process effectively adjusts the simulated data envelope to closely match the observed trend, 
while also reducing the variability of the simulated values. Similar patterns were noticed in the well A2 GOR 
and the WCT, which resemble the well A1 WCT. To better assess the performance of history matching, one can 
calculate the ensemble-averaged objective function J.

The equation involves the observed values of gas-oil ratio (GOR) and water cut (WCT), represented by oi 
and oj , respectively, for two wells. The value cij corresponds to the observed value oi and is obtained through the 
simulation of the Jth ensemble member. Table 3 defines standard deviations. Before and after EnKF integration, 
Figs. 7, 8, 9 show the average objective function values of three ensembles. EnKF systematically decreases objec-
tive function values, with significant improvement for larger ensembles.

Statistical analysis of integrated ensembles
The EnKF updates the covariance and mean of the ensemble by using Monte Carlo sampling of the posterior 
probability. This method analyzes the effects on ensemble statistics by using the mean and standard deviation 
as estimators.

Ensemble mean updates
To define the ensemble mean, an average porosity field 〈ms〉

o/u
a  was computed by taking the mean value of the 

porosity field across all members of the ensemble, where

Equation (11) offers two choices for the mean-field calculation. The first one is based on the original ensemble 
(denoted by superscript ‘o’), while the second one is based on the ensemble after the EnKF updates (denoted by 
superscript ‘u’). The approximations of the Kriged baseline porosity field are represented by the average porosity 
fields 〈ms〉

o , which can be observed in both Figs. 9 and 3.
Equation (11) computes the mean field using original or updated ensembles (labeled A, B, or C). The average 

porosity fields 〈ms〉
o approximate the Kriged baseline porosity field, as seen by comparing the original ensemble 

A’s average porosity field (Fig. 10) with the Kriged porosity map (Fig. 9).
Porosity fields, denoted by 〈ms〉

u
a , provide unbiased estimates of the posterior mean. Figure 1 displays porosity 

maps for ensemble A. The EnKF integration led to an increase in the average porosity in the West and South-East 
flanks. Ensemble C had similar porosity values to the original mean. The lack of porosity over-shooting may 
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indicate more consistency with larger ensembles. Over-shooting did occur in the far West, but it did not affect 
oil-in-place computations; it only provided pressure support.

The integration of EnKF increased the average porosity in the West and South-East flanks. Ensembles A 
and B showed high porosity values of up to 42%, while ensemble C’s porosity values were similar to the original 
mean field. Overshooting mainly occurred in the far West, away from the oil rim, but did not negatively affect 
oil-in-place computations. In this framework, the best models to represent the integrated ensembles are those 
defined by the ensemble means, namely 〈ms〉

u
A , 〈ms〉

u
B , and 〈ms〉

u
C.

Figure 9.   Average original porosity for ensemble A in a representative layer.

Figure 10.   Average porosity for ensemble A after EnKF integration in a representative layer.
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Figure 11.   The measured GOR values for Well A1.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13589  | https://doi.org/10.1038/s41598-024-64213-2

www.nature.com/scientificreports/

In Fig. 11, black, red, and blue lines represent ensembles A, B, and C, respectively. Figure 11 shows GOR values 
computed based on integrated porosity mean values 〈ms〉

u
A , 〈ms〉

u
B , and 〈ms〉

u
C , together with original porosity mean 

values 〈ms〉
o
A , 〈ms〉

o
B , and 〈ms〉

o
C . This image shows that the mean models can also be considered as individually 

history-matched models, which are appropriate for deterministic purposes.
As anticipated, in a scenario where the computing system is held equal, an increase in the number of ensem-

ble members results in a corresponding increase in computing time. Figure 11 displays the computing time for 
Ensembles A, B, and C prior to the integration of ENKF, over a forecast period of approximately one year, which 
was measured at 320, 465, and 504 min, respectively. Conversely, after the integration of ENKF, the computing 
time for Ensembles A, B, and C over the same forecast period increased to 768, 1048, and 1123 min, respectively.
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Figure 12.   The standard deviation of cumulative oil production vs. time for 20 years forecast, the original 
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Table 4.   The estimated oil production over 20 years for three flowcharts using ensemble B after EnKF 
integration.

Ensemble Flowchart Estimated oil production over 20 years of production (MMSTB)

B

I 6.85

II 7.98

III 5.01
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Analysis of uncertainty for production forecasting
According to Table 3, it is evident that the optimal number of ensembles is 100 (Ensemble B). This is due to the 
fact that the average value of the cost function after integration is lower for Ensemble B compared to Ensembles 
A and C, at the minimum possible state. Therefore, Ensemble B was exclusively utilized to forecast production 
for a period of 20 years, as it demonstrated superior performance when compared to Ensembles A and C.

To assess the uncertainty of production forecasts, Ensemble B can generate predictions for 20 years. Both 
wells have a minimum tubing head target of 400 psi, and if the water cut (WCT) exceeds 50%, abandonment 
constraints come into play. Flowcharts I and II serve to restrict slug flow before reaching the separator. The 
implementation of the Ensemble Kalman Filter (EnKF) resulted in a 39% reduction in the standard deviations 
of predicted cumulative oil production by the end of the 20th year, as depicted in Fig. 12.

In Fig. 13, the integrated ensemble predictions exhibit statistically significant differences from the original 
predictions. This is evidenced by the combined average incremental cumulative oil production and standard 
deviations.

In the figure above, the error bars were defined using the standard deviations. The Table 4 displays the esti-
mated quantity of oil production predicted using flowcharts. According to Table 3, Ensemble B with 100 members 
performed the best and was selected.

According to the results presented in Table 4, Flowchart II, which only uses a pressure controller, produces 
more oil after 20 years than Flowchart I. However, Flowchart I, which utilizes both a separator pressure controller 
and slug flow control, can prevent slug flow despite producing less oil. To enhance oil production, an integrated 
production model can be employed, incorporating the use of a Kalman filter, a separator’s pressure controller, 
and sludge control. This approach has the potential to increase oil production by at least 59%. By implementing 
this method, approximately 2.97 million barrels of surplus oil can be produced in 20 years for the actual oil field, 
resulting in improved production control and a significant boost in economic income.

Comparison of the functionality between the provided code and commercial 
integrated modeling software
In this section, we will compare the capabilities of the code presented in this research with existing commercial 
software for integrated production modeling. For instance, when discussing the capabilities of the provided 
code in comparison with the software provided in The IPM suite, we can highlight that the code provided in 
this research, unlike The IPM suite, is capable of measuring the level and pressure of the separator at any given 
time. It can also measure and control production using appropriate control models based on the optimization 
process. Furthermore, this code can optimize the entire integrated production system in real time, alleviate the 
slug flow regime prior to the separator, and simultaneously adapt itself with predictive Kalman filter models, 
which surpasses the capabilities of commercial software for integrated production system modeling such as The 
IPM suite, Petroleum Experts (PetEx) suite, and Olga.

Conclusions
The EnKF method was used to adjust porosity fields to simulate the production of an oil reservoir for nearly a 
year. The results confirmed that EnKF can be used for history matching in real reservoir models. Additionally, an 
analysis was conducted to determine how the effectiveness of EnKF is affected by the number of fields included 
in the statistical ensembles. For this purpose, three ensembles consisting of 40, 100, and 130 members were used.

This study attempted to explore the relationship between the effectiveness of EnKF and the size of the ensem-
ble for a real problem. However, the limited number of ensembles analyzed prevented us from reaching any 
definitive conclusions on key topics, such as the number of fields required from a practical standpoint. Neverthe-
less, some interim conclusions can be drawn.

According to this analysis, using ensembles consisting of 100 or 130 members would improve the calibration 
quality. This was confirmed through the objective function values reported in Table 3, although the differences 
were not significant from a quantitative perspective.

This study is the first attempt to couple EnKF with an integrated model consisting of a real oil reservoir, real 
production wells, a surface choke, a surface pipeline, a separator, and a pressure controller.

In this research, a real integrated production system has been optimized for the first time. The optimization 
was done by considering the constraint that there is no slug flow at the inlet of the separator, and the objective 
function was to maximize the net present value (NPV) in the storage tank.

After EnKF integration, mean porosity values showed some local overshooting in the case of ensembles A and 
B, but not in ensemble C. However, integrated porosity ensembles proved to be useful in predicting production 
with less uncertainty in ensemble B.

Flowchart II produces more oil in 20 years than Flowchart I. An integrated production model with a Kalman 
filter, separator pressure controller, and slug control can improve oil production by at least 59%. This approach 
can generate about 2.97 million barrels of surplus oil in the oil field, resulting in significant economic gains.
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