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Enhancing performance 
in the presence of outliers 
with redescending M‑estimators
Aamir Raza 1, Mashal Talib 1, Muhammad Noor‑ul‑Amin 2, Nevine Gunaime 3, Imed Boukhris 4 & 
Muhammad Nabi 5*

In real-life situations, we have to analyze the data that contains the atypical observations, and the 
presence of outliers has adverse effects on the performance of ordinary least square estimates. In this 
situation, redescedning M-estimators, proposed by Huber (1964), are used to tackle the effects of 
outliers to increase the efficiency of least square estimates. In this study, we introduce a redescending 
M-estimator designed to generate robust estimates by mitigating the influence of outlier 
observations, even when the tuning constant is set to low values. This innovative estimator exhibits 
enhanced linearity at its core and maintains continuity throughout its range. Our proposed estimator 
stands out for its novelty, simplicity, differentiability, and practical applicability across real-world 
scenarios. The results of the proposed redescedning M-estimators are compared with existing robust 
estimators using an extensive simulation study. Two examples based on real-life data are also added 
to validate the performance of the suggested function. The formulated redescedning M-estimator 
produced efficient results as compared to all the considered redescedning M-estimators.
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The ordinary least square (OLS) technique is usually applied to estimate the parameters of the regression line. 
The performance of the OLS depends on the assumptions of the error terms. The OLS procedure is widely applied 
in real-life situations for estimation, and it is regarded as an ideal technique for estimation. Nevertheless, it is 
recognized that OLS may perform less well when errors are not normally distributed, especially when heavy-
tailed distributions or outlying data are included. The OLS’s sensitivity to outliers can produce deceptive results. 
The robust regression technique has been created as an improved alternative in response to these difficulties. 
Robust regression functions can be used as a supplement to the least squares estimate, address the impact of 
outliers and these methodologies can also identify valid observations and can provide stability in the presence 
of substantial data points. Robust regression becomes an essential technique when analyzing datasets impacted 
by outliers, as it allows the detection of such variations and produces consistent results when data have outliers.

Huber1 created M-estimation, the most widely used general robust regression approach. The robust estima-
tors that are most commonly used are the following: Huber’s M-Estimators Huber1, MM-estimators (Yohai2), 
GM-Estimators, Siegel’s Repeated Median Estimators (Rousseeuw3), Least Median of Squares (LMS) estima-
tors, Least Trimmed Squares (LTS) estimators (Rousseeuw4), S-Estimators (Rousseeuw4), Minimum Vol-
ume Ellipsoid (MVE) estimators (Rousseeuw3), and Minimum Covariance Determinant (MCD) estimators 
(Rousseeuw&Driessen5), robust estimators for exponential families of distribution (Baraud & Chen6) and robust 
estimators for high directional linear regression models (Ghosh et al.7).

M‑Estimators
The creation of the M-estimator embodies Huber’s fundamental contribution to statistical methods. Huber’s 
approach minimizes a function of residuals that develops more slowly, in contrast to traditional approaches that 
minimize the sum of the squared residuals. This method was created especially to lessen the impact of outliers in 
the regression analysis. The maximum likelihood formulations are used in M-estimators, which perform excep-
tionally well in non-normally distributed settings by figuring out the most optimal weightings for the dataset. 
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To strengthen the estimator against the impact of outliers and improve the general resilience and reliability of 
regression analyses, this robust technique entails replacing the squared residuals used in Ordinary Least Squares 
(OLS) estimation with an alternative function of residuals, resulting in

where ρ is a symmetric function with a unique minimum value at zero. The ρ
(

pk
)

 is typically chosen to represent 
a weighting mechanism for the kth residual, deliberately giving outlier observations less weight. By purpose-
fully reducing estimates, this intentional reduction makes estimates less vulnerable to noise, which strengthens 
the modeling method. Interestingly, giving a weight of zero to an observation correlates with classifying it as an 
outlier. Certain characteristics of a well-designed ρ function are necessary to ensure its reasonability within the 
strong regression framework.

1.	 ρ(0) = 0

2.	 ρ
(

p
)

≥ 0

3.	 ρ
(

p
)

= (−p)(symmetry)
4.	 For 0 < p1 < p2 ⇒ ρ(p1) ≤ ρ(p2)
5.	 ρ is continuous (  is differentiable)

By differentiating Eq. (1) with respect to the residuals p, resulting the psi function given as

where �(.) is the derivative of ρ(.) and the maximum likelihood estimator serves as the corresponding M-esti-
mator. After that, the weight function is obtained by dividing the psi function by the residuals that correspond 
to it, which is, wi = �(p)

pi
 . Then the above estimated weight function can be written as

Iterative methods are necessary to solve the above-described nonlinear equation system to compute M-esti-
mators. When it comes to optimization tactics, the Iterative Reweighted Least Squares (IRLS) approach is widely 
acknowledged as a popular and widely used method. Because IRLS is iterative, it is a reliable and effective tech-
nique for handling the complexity involved in calculating M-estimators. The valuable contribution in the field 
of M-estimators is done by many researched and renowned names are Raza et al.8, Mukhtar et al.9, Luo et al.10, 
Anekwe & Onyeagu11, Noor-ul-Amin et al.12, Khalil et al.13, Alamgir et al.14, Ullah et al.15, Ali & Qadir16, Qadir17, 
Hampel18, Andrews19 and Beaton & Tukey20.

Redescending M‑estimators
One of the unique capabilities of redescending M-estimators is their complete ability to eliminate the impact of 
severe outliers. These estimators exhibit robustness when handling data with prominent outliers, as evidenced 
by their notable non-decreasing behaviour around the origin. The following list describes a few popular and 
highly known redescending M-estimators.

A first attempt at M-estimator specifically for regression tasks was presented by Andrews in 1974 by giving 
Andrews-Sine function that was a unique redescending M-estimator. This estimator is simply redescending and 
stands out for its increased robustness against outliers. The �—function of Andrews- sine estimator is presented 
as 

where p is the OLS error term and h is the tuning constant.
Beaton & Tukey20 introduced yet another redescending M-estimator known as Tukey’s bi-weight function, 

which has gained widespread utility. The Tukey’s bi-weight estimator’s �—function can be obtained by

where k is tuning constant. Certain drawbacks of the Andrews Ψ function are efficiently addressed by Tukey’s 
bi-weight and. It’s crucial to remember that these substitutes provide some logical compliance a lesser weight.

Hampel18 is credited with introducing Hampel’s three-piece-wise redescending M-estimator, commonly 
referred to as Hampel’s three-part redescending estimators. These estimators are characterized by a psi-function 
that becomes 0 in the presence of significant residuals. Notably, the objective function of these M-estimators is a 
stepwise function, illustrating their efficacy in addressing outliers and efficiently handling regression problems. 
The � - function of Hample’s M estimator is,
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where h, k and n are tuning constants, 0 < k ≤ h < n < ∞. The Princeton Robustness Study revealed that his estima-
tor performed admirably. The function is not optimal and it is not perfectly differentiable. One would prefer a 
smoother Ψ-function despite its success.

There has been a notable trend towards the development of techniques characterized by smoother mathemati-
cal properties and increased robustness. This trend has led to the creation of smoothly redescending M-estima-
tors, which have been influenced by the preference for such characteristics. Qadir17 acquainted another rede-
scending M-estimator comprehended as Qadir Beta function. The � funtion of Qadir Beta estimator is given by

According to research done by Ali & Qadir16, the author suggested a modified version of Tukey’s bi-weight 
function. This updated version’s �—function is shown as.

A redescending M-estimator was developed by Ullah et al.15 to identify outliers. The �—function of Ullah’s 
redescending M- estimator is presented by

Alamgir et al.14 indicated another redescending M- estimator for robust regression. The � -function of Alam-
gir’s redescending M- estimator is presented by

Khalil et al.13 also introduces a redescending M-estimator. The � - fucntion of his estimator is presented by

Noor-ul-Amin et al.12 proposed a new redescending M-estimator for robust regression whose � - fucntion 
is given as

Another new redescending M- estimator was introduced by Raza et al.8, he claimed that his psi function 
provided more efficient results. The � - function of Raza given below

For regression analysis, attaining the highest breakdown point is a desirable attribute of several redescending 
M-estimators. The M-estimator proposed by Ali et al. and Alamgir et al. are noteworthy due to its total rejection 
of observations with greater residuals. Although Ullah et al. attempt to offer an estimator that overcomes this 
constraint, it is not very generic. As a result, we have created an M-estimator with redescending characteristics 
that successfully fixes the issues with the estimators that were previously provided.

Proposed redescending M‑estimator
We present a novel redescending M-estimator with the characteristics of redescending estimators to improve 
the robust regression outlier identification. Specifically created to overcome the drawbacks of traditional M-esti-
mators, this new estimator is a cutting-edge tool for robust regression. The following explanation delves further 
into the characteristics and forms of the relevant � - function, weight function, and ρ -function, offering a clear 
understanding of the unique aspects of our suggested methodology.

(6)�
�

p
�

=















p
�

�p
�

� ≤ k
ksign

�

p
�

k <
�

�p
�

� ≤ h

k
n−|p|
n−h sign(r) h <

�

�p
�

� ≤ n

0
�

�p
�

� > n















(7)�
(

p
)

=
{

p

16k4

(

k + p
)2(

k − p
)2

∣

∣p
∣

∣ ≤ k

0
∣

∣p
∣

∣ > k

}

(8)�
(

p
)

=
{

2p
3

[

1−
( p
k

)4
]2 ∣

∣p
∣

∣ ≤ k

0
∣

∣p
∣

∣ > k

}

(9)�
(

p
)

= p

[

1+
(p

k

)4
]−2

for
∣

∣p
∣

∣ ≥ 0

(10)�
�

p
�

=















16pe
−2

�

p
k

�2

�

1+e
−
�

p
k

�2
�2

�

�p
�

� ≤ k

0
�

�p
�

� > k















(11)�
�

p
�

=







p
�

3

2

�

�

1−
� p
k

�4
�2

sin

�

�

2

3

�

�

1−
� p
k

�4
�2

�

�

�p
�

� ≤ k

0
�

�p
�

� > k







(12)�
�

p
�

= c2

4







tan−1

�

2p
c

�2

4
+ p2c2

c4 + 16p4






for

�

�p
�

� ≥ 0

(13)�
(

p
)

= k2

2a

[

1−
{

1+
(p

k

)2
}−a

]

for
∣

∣p
∣

∣ ≥ 0



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13529  | https://doi.org/10.1038/s41598-024-64239-6

www.nature.com/scientificreports/

The proposed M-estimator’s function is specified as

where p are residuals obtained from the OLS a works the tuning constant. We have discussed in details the 
shape of the objective function in Fig. 1. The suggested function is recursive and meets the required criteria. 
The typical characteristics are:

•	 ρ(0) = 0

•	 ρ
(

p
)

≥ 0

•	 ρ
(

pi
)

= ρ(−pi)(symmetry)
•	 For 0 < pi < p ⇒ ρ(pi) ≤ ρ(pj)
•	 ρ is continuous (  is differentiable)

A series of residuals are produced using the R-program to show how well the suggested M-estimator performs. 
The objective function’s resulting graph is shown in Fig. 1, and it clearly shows a declining trend. This graphic 
sheds light on the properties and performance of the suggested objective function.

Differentiating ρ(.) with respect to residuals, we obtained psi-function that is represented in Eq. (15)

Using data in Fig. 1, the graphical display of �
(

p
)

 is presented in Fig. 2.
The recommended psi-function given in Fig. 2 is a more linear and differentiable profile at the center of the 

curve than the considered psi-functions used for robust regression to tackle the outliers. Crucially, the proposed 
psi-function fulfills all the necessary conditions to build an iterative M-estimator. Additionally, this function 
highlights how well it captures the desired qualities for robust regression analysis by giving greater weight to 
values closer to the center and decreasing weight for values away from the center.

We found the corresponding weight function, which is provided, by dividing the �-function by residual "r".

The graphical representation of the weight function is displayed in Fig. 3.
Figure 3 demonstrates the proposed weight function’s special robustness attributes.

Graphical comparison of proposed redescending M‑estimator
A comparative study is carried out between the suggested redescending M-estimator and other well-known 
redescending �-functions using graphical representations of �-functions. Especially, the suggested M-function 
showed linearity greater than the considered regressive functions, guaranteeing continuous differentiability eve-
rywhere. This property increases the suggested M-estimator’s overall efficacy. The graphical comparison between 
the proposed and existing �-functions is clearly illustrated in Fig. 4, which further clarifies the beneficial aspects 
of the recommended methodology.
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Figure 1.   Graph of the proposed objective function.
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Figure 2.   Graph of Ψ—function for the suggested M-Estimator.

Figure 3.   Graph of the weight -function for Proposed M-estimator.

Figure 4.   Combined plot of Tukey, Qadir, Ali, Ullah and Proposed Ψ –functions.
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The Fig. 4 representations showed that the suggested psi function gave more weight to the central observa-
tions as compared to the considered estimators and less weight to the values that have larger outliers which is 
the primary objective of the proposed redescending M-estimator. The suggested estimator is continuous and 
differentiable everywhere within the graph.

Practical applications
In this section performance of the suggested M-estimator is demonstrated by adding detailed comparisons 
among the considered redescending M-estimators by providing a thorough study of real-life data examples along 
with simulation results. By evaluating real-world data and simulating situations, our goal is to offer a thorough 
grasp of the effectiveness and relative benefits of the suggested estimator in real-world applications. To attain 
this objective R-programing is used.

Example‑1: yearly average price growth in China 1940–1948
In case I, the data is taken from the Rousseeuw’s3. This data had previously been employed by Ullah et al.15 and 
Raza et al.8 in their studies on robust regression. The dataset includes nine average annual rates of price growth 
that were observed between nineteen forty to nineteen forty eight. The variable of interest is the annual growth 
rate, and years are taken as the predictors. The average growth rates were 1.620%, 1.630%, 1.900%, 2.640%, 
2.050%, 2.130%, 1.940%, 15.500%, and 364.0%.

Additionally, the war, the budget deficit, and increased government expenditure during that time all contrib-
uted to an exponential rise in prices that resulted in an important increase in rate jump to 364.00% in 1948..The 
suggested methodology is compared to other well-known robust methods using the cited data. Table 1 provides 
the estimates of sum of squared of errors and regression coefficients for every method. A thorough examination 
of the outcomes shows that OLS has serious performance issues and consistently showed adverse results. This 
emphasizes how sensitive OLS is towards the outliers, as it shown by the highest sum of squared errors (78532.88).

On the other hand, other strong methods successfully lessen the influence of irregularities. Interestingly, the 
suggested robust function performs better on outlier-filled data, as evidenced by the lowest sum of square residu-
als. This emphasizes how reliable and effective the suggested estimator is as compared to other alternative choices.

Example‑2: data of telephone phone calls from Belgium from 1950–1973
The second case study, which comes from Rousseeuw’s3 article, looks at the Belgium Statistical Survey’s year-by-
year count of international telephone calls (in 10 millions) made from Belgium between 1950 and 1973 (Table 2). 
There are few outliers in the response variable in this data. The years are the independent variable (represented 
by X), and the dependent variable (represented by Y) is the annual telephone call count. Several writers have 

Table1.   Comparison Among the existing and Proposed M-Estimators using data of Annual Average growth 
rate of China.

Methods

Coefficients 
estimates

A b Values used SSE

OLS − 1049 24.850 9 78,532.88

LMS − 2.470 0.1020 7 0.69534

Tukey(2) − 2.7535 0.10896 7 0.616652

Andrews(0.58) − 2.7542 0.10898 7 0.616687

Ali (3.0) − 2.7792 0.10956 7 0.617851

Qadir (1.0) − 2.7779 0.10950 7 0.617785

Khalil (2.0) − 2.7851 0.10970 7 0.618139

Alamgir (3.0) 2.7853 0.10970 7 0.61815

Ullah (1.5) − 2.7851 0.10970 7 0.615962

Raza(8, 2) − 2.6486 0.10656 7 0.611112

Proposed(1) − 2.7832 0.10965 7 0.611111

Table 2.   Number of telephone calls (10 million) from the Belgium.

Years 1950 1951 1952 1953 1954 1955 1956 1957

Calls 0.440 0.470 0.470 0.590 0.660 0.730 0.810 0.880

Years 1958 1959 1960 1961 1962 1963 1964 1965

Calls 1.060 1.200 1.350 1.490 1.610 2.120 11.90 12.40

Years 1966 1967 1968 1969 1970 1971 1972 1973

Calls 14.20 15.90 18.20 21.20 4.300 2.400 2.700 2.900
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previously used this dataset in their research: Qadir17, Ali & Qadir16, Khalil et al.13, and Raza et al.8. Table 2 
presents a study of the performance of the suggested redescending M-estimator, taking into account estimators 
that are relevant to this dataset.

Table 3 presents a comprehensive comparison between our proposed robust estimator and Ordinary Least 
Squares (OLS) alongside other robust estimators. The regression coefficients were derived by applying all con-
sidered functions, with the corresponding sum of squares displayed in the table. Notably, outlier influence 
significantly compromises OLS estimates, resulting in the highest total of squared errors (659.44) and poten-
tially misleading insights across the dataset. Conversely, outlier effects are effectively mitigated by all other 
M-estimators, including the robust estimator we have introduced. It is important to highlight that our proposed 
estimator exhibits the lowest sum of squared errors, indicating superior performance and yielding a model with 
minimized SSE. This underscores the efficacy of the recommended robust estimator in enhancing the accuracy 
and reliability of the regression model.

The Fig. 5, showed a graphical comparison of all the consider robust estimators along with proposed robust 
estimator. It showed that the proposed robust estimator has least sum of square of errors among all the consid-
ered robust estimators hence it produced the most efficient results for the data having contamination of outliers.

Simulation results
The evaluation of performance among the considered estimators is frequently conducted through simulation, 
a valuable technique, particularly when the true parameter values of the generated data are known. Utilizing 
a simulation strategy devised by Rousseeuw3, we have assessed the effectiveness of the proposed method. We 
contrasted it with several prominent redescending M-estimators to gauge its performance against established 
benchmarks. For the simulation study, following OLS model is incorporated to generate the data

where x follows a normal distribution with µ = 20&σ 2 = 10 , α = 2,β = 1 and ui ∼ N(0, 1) . With the help of 
the previously mentioned linear model, we have produced a population of 10,000 values. The R-Program has 
then been used to randomly select 100 values from this population as a sample. The parameter estimates have 
been computed using the considered M-estimators in addition to the suggested redescending M-estimator. 
Table 4 presents the results, providing a summary of the parameter estimates derived from the various estimators 
that may be compared. In this study, we assess the performance of the specified functions under two distinct 

yi = α + βxi + ui

Table 3.   Comparison among the existing and proposed M-estimators on the data of telephone calls.

Method

Coefficients

a b n SSEs

LMS − 5.1640 0.1080 16 0.13130

Tukey (3.8) − 5.2439 0.1102 16 0.13665

Andrews (1.5) − 4.9072 0.1033 16 0.17308

Ali (3.0) − 5.2092 0.1094 16 0.13404

Qadir (1.0) − 5.2092 0.1122 16 0.13404

Ullah (4) − 5.2430 0.1102 16 0.14060

Khalil (4.0) − 5.2343 0.1099 16 0.13863

Alamgir (3.0) − 5.2343 0.1102 16 0.14127

Raza(6, 3.5) − 5.5109 0.1094 16 0.13256

Proposed(2) − 5.16568 0.1085 16 0.13120

0

0.05

0.1

0.15

0.2

SSEs

SSEs

Figure 5.   Graphical Comparison among the Existing and Proposed M-Estimators.
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scenarios. Firstly, parameter estimation is carried out using clean, outlier-free normal data. Secondly, estimation 
is performed with the addition of 10% outliers in the Y direction. As discussed by Norazan21, M-estimators often 
yield suboptimal estimates in the presence of outliers in the X direction. The results presented in Table 4 represent 
the average outcomes of 50,000 simulated data iterations, each comprising 100 samples. All methodologies dem-
onstrate consistent performance in Case 1, where outliers are absent, underscoring their reliability in standard 
settings. In contrast, our proposed M-estimator yields estimates closely resembling the actual parameter values 
utilized in the simulation for Case II, where outliers are intentionally introduced. With the exception of the OLS 
approach, which exhibits unreliable outcomes in the presence of outliers, the considered estimators consistently 
deliver efficient results, corroborating the findings outlined in Section. “Graphical Comparison of Proposed 
Redescending M-Estimator”. The demonstrated effectiveness of the suggested M-estimator, particularly in sce-
narios with limited sample sizes, underscores its reliability and robustness for sampling and estimation tasks.

Conclusion
The main purposed of this work is to obtain reliable and efficient estimates when data contain outliers. It has 
been consistently shown by the results from earlier sections that the proposed redescending M-estimator is more 
adaptable and effective than the redescending M-estimators considered in this study. The proposed M-estimator 
exhibits much more continuous behavior before redescending as compared to the previously developed rede-
scending M-estimators. Greater breadth, flexibility, simplicity, and faster convergence characterize the proposed 
estimator above its predecessors. The suggested redescending M-estimator is more successful, producing the 
minimum sum of squared errors in the presence of outliers, according to real data applications. The results of 
simulation tests demonstrate that the coefficients produced by the suggested robust estimator are in good agree-
ment with the genuine parameters, demonstrating the robust estimator’s comparability with other well-known 
estimators including Huber, Hampel, Andrews, and Beaton & Tukey. Furthermore, the suggested estimator 
performs no less well than the Ordinary Least Squares (OLS) method when there are no outliers. Together, 
these findings highlight the robustness and superiority of the proposed redescending M-estimator in a variety of 
scenarios and applications. The proposed redescending M-estimators can be utilized for combined monitoring 
the population mean and variance in simple random sampling, in two phase sampling, in ranked set sampling 
etc. This M-estimator can also be used to produce robust statistical quality control tools for SPC.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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