Table 13 The regret-rejoice values and ranking results with different parameter \(p\).

From: A generalized interval-valued p,q Rung orthopair fuzzy Maclaurin symmetric mean and modified regret theory based sustainable supplier selection method

\(p\)

\({\mathbb{R}}\left( {o_{1} } \right)\)

\({\mathbb{R}}\left( {o_{2} } \right)\)

\({\mathbb{R}}\left( {o_{3} } \right)\)

\({\mathbb{R}}\left( {o_{4} } \right)\)

\({\mathbb{R}}\left( {o_{5} } \right)\)

Ranking

\(p = 4\)

0.0250

0.0302

0.0305

− 0.0305

0.0300

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 5\)

0. 0247

0.0304

0.0306

− 0.0326

0.0300

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 6\)

0.0246

0.0305

0.0307

− 0.0327

0.0299

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 7\)

0.0246

0.0305

0.0307

− 0.0328

0.0299

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 8\)

0.0246

0.0305

0.0308

− 0.0328

0.0299

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 9\)

0.0246

0.0305

0.0308

− 0.0328

0.0299

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(p = 10\)

0.0246

0.0306

0.0308

− 0.0328

0.0299

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)