Table 14 The regret-rejoice values and ranking results with different parameter \(q\).

From: A generalized interval-valued p,q Rung orthopair fuzzy Maclaurin symmetric mean and modified regret theory based sustainable supplier selection method

\(p\)

\({\mathbb{R}}\left( {o_{1} } \right)\)

\({\mathbb{R}}\left( {o_{2} } \right)\)

\({\mathbb{R}}\left( {o_{3} } \right)\)

\({\mathbb{R}}\left( {o_{4} } \right)\)

\({\mathbb{R}}\left( {o_{5} } \right)\)

Ranking

\(q = 4\)

0.0250

0.0302

0.0305

− 0.0305

0.0300

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(q = 5\)

0.0181

0.0217

0.0219

− 0.0229

0.0216

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(q = 6\)

0.0125

0.0146

0.0147

− 0.0153

0.0147

\(o_{3} = o_{5} \succ o_{2} \succ o_{1} \succ o_{4}\)

\(q = 7\)

0.0084

0.0095

0.0095

− 0.0100

0.0096

\(o_{5} \approx o_{3} = o_{2} \succ o_{1} \succ o_{4}\)

\(q = 8\)

0.0055

0.0059

0.0060

− 0.0063

0.0060

\(o_{3} = o_{5} \approx o_{2} \approx o_{1} \succ o_{4}\)

\(q = 9\)

0.0035

0.0037

0.0037

− 0.0040

0.0037

\(o_{3} = o_{2} = o_{5} \approx o_{1} \succ o_{4}\)

\(q = 10\)

0.0022

0.0022

0.0022

− 0.0025

0.0022

\(o_{3} = o_{2} = o_{5} = o_{1} \succ o_{4}\)