Table 15 The regret-rejoice values and ranking results with different parameter \(\alpha\).

From: A generalized interval-valued p,q Rung orthopair fuzzy Maclaurin symmetric mean and modified regret theory based sustainable supplier selection method

\(\alpha\)

\({\mathbb{R}}\left( {o_{1} } \right)\)

\({\mathbb{R}}\left( {o_{2} } \right)\)

\({\mathbb{R}}\left( {o_{3} } \right)\)

\({\mathbb{R}}\left( {o_{4} } \right)\)

\({\mathbb{R}}\left( {o_{5} } \right)\)

Ranking

\(\alpha = 0.1\)

− 0.0172

− 0.0160

− 0.0159

− 0.0283

− 0.0162

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.2\)

− 0.0072

− 0.0053

− 0.0052

− 0.0285

− 0.0054

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.3\)

0.0010

0.0037

0.0039

− 0.0287

0.0036

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.4\)

0.0077

0.0111

0.0113

− 0.0288

0.0109

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.5\)

0.0131

0.0171

0.0173

− 0.0294

0.0169

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.6\)

0.0175

0.0219

0.0221

− 0.0301

0.0217

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.7\)

0.0209

0.0256

0.0258

− 0.0309

0.0254

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.8\)

0.0234

0.0285

0.0287

− 0.0317

0.0282

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 0.9\)

0.0253

0.0306

0.0308

− 0.0328

0.0303

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\alpha = 1.0\)

0.0266

0.0320

0.0323

− 0.0334

0.0318

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)