Table 16 The regret-rejoice values and ranking results with different parameter \(\beta\).

From: A generalized interval-valued p,q Rung orthopair fuzzy Maclaurin symmetric mean and modified regret theory based sustainable supplier selection method

\(\beta\)

\({\mathbb{R}}\left( {o_{1} } \right)\)

\({\mathbb{R}}\left( {o_{2} } \right)\)

\({\mathbb{R}}\left( {o_{3} } \right)\)

\({\mathbb{R}}\left( {o_{4} } \right)\)

\({\mathbb{R}}\left( {o_{5} } \right)\)

Ranking

\(\beta = 0.1\)

0.0085

0.0102

0.0103

− 0.0106

0.0101

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.2\)

0.0168

0.0203

0.0205

− 0.0214

0.0201

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.3\)

0.0205

0.0302

0.0305

− 0.0324

0.0300

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.4\)

0.0330

0.0400

0.0403

− 0.0435

0.0397

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.5\)

0.0410

0.0496

0.0500

− 0.0547

0.0492

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.6\)

0.0488

0.0591

0.0596

− 0.0662

0.0587

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.7\)

0.0565

0.0685

0.0690

− 0.0777

0.0679

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.8\)

0.0640

0.0777

0.0783

− 0.0895

0.0771

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 0.9\)

0.0715

0.0868

0.0875

− 0.1014

0.0861

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)

\(\beta = 1.0\)

0.0788

0.0957

0.0965

− 0.1135

0.0950

\(o_{3} \succ o_{2} \succ o_{5} \succ o_{1} \succ o_{4}\)