Table 3 The performance of the prediction models based on different classifications using a test dataset with 95% CI.
Algorithms | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) | Accuracy (95% CI) |
---|---|---|---|---|
GLM | 0.64 (0.63, 0.66) | 0.67 (0.64, 0.69) | 0.72 (0.70, 0.73) | 0.65 (0.64, 0.67) |
Ridge | 0.89 (0.88, 0.90) | 0.36 (0.34, 0.39) | 0.71 (0.70, 0.73) | 0.71 (0.70, 0.73) |
Lasso | 0.89 (0.88, 0.90) | 0.37 (0.34, 0.39) | 0.72 (70, 0.73) | 0.71 (0.69, 0.72) |
elastic-net | 0.89 (0.88, 0.90) | 0.36 (0.34, 0.39) | 0.72 (0.70, 0.73) | 0.70 (0.69, 0.72) |
ANN | 0.64 (0.63, 0.66) | 0.71 (0.68, 0.73) | 0.74 (0.73, 0.75) | 0.67 (0.65, 0.68) |
KNN | 0.84 (0.83, 0.86) | 0.43 (0.40, 0.45) | 0.71 (70, 0.73) | 0.70 (0.69, 0.72) |
NB | 0.59 (0.57, 0.61) | 0.72 (0.69, 0.74) | 0.70 (0.68, 0.71) | 0.63 (0.61, 0.65) |
Bagged tree | 0.80 (0.78, 0.81) | 0.53 (0.50, 0.56) | 0.74 (0.72, 0.75) | 0.71 (0.69, 0.72) |
RF | 0.81 (0.80, 0.83) | 0.55 (0.52, 0.58) | 0.77 (0.75, 0.78) | 0.72 (0.71, 0.73) |
Boosting | 0.82 (0.81, 0.84) | 0.53 (0.50, 0.55) | 0.76 (0.74, 0.77) | 0.72 (0.71, 0.74) |
DT | 0.86 (0.85, 0.88) | 0.40 (0.37, 0.73) | 0.68 (66, 0.70) | 0.71 (0.69, 0.72) |