
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports

A tabular data generation
framework guided by downstream
tasks optimization
Fengwei Jia 1,2, Hongli Zhu 1,2, Fengyuan Jia 3, Xinyue Ren 1,2, Siqi Chen 1,2, Hongming Tan 1,2 &
Wai Kin Victor Chan 1,2,4*

Recently, generative models have been gradually emerging into the extended dataset field,
showcasing their advantages. However, when it comes to generating tabular data, these models often
fail to satisfy the constraints of numerical columns, which cannot generate high-quality datasets
that accurately represent real-world data and are suitable for the intended downstream applications.
Responding to the challenge, we propose a tabular data generation framework guided by downstream
task optimization (TDGGD). It incorporates three indicators into each time step of diffusion
generation, using gradient optimization to align the generated fake data. Unlike the traditional
strategy of separating the downstream task model from the upstream data synthesis model, TDGGD
ensures that the generated data has highly focused columns feasibility in upstream real tabular data.
For downstream task, TDGGD strikes the utility of tabular data over solely pursuing statistical fidelity.
Through extensive experiments conducted on real-world tables with explicit column constraints and
tables without explicit column constraints, we have demonstrated that TDGGD ensures increasing
data volume while enhancing prediction accuracy. To the best of our knowledge, this is the first
instance of deploying downstream information into a diffusion model framework.

Specific domain data, known as vertical domain, has become a key resource to drive innovation in various fields,
such as healthcare, finance, and education. However, the insufficient amount of data has become a prominent
problem when building and optimizing machine learning models in these fields. Vertical domain models require
a large amount of labeled data to capture specific rules and patterns. However, due to the high cost of data acqui-
sition and cumbersome labeling work, the amount of data is often difficult to meet the needs of model training.
Insufficient data leads to limited accuracy, poor generalization, and an increased risk of overfitting. To overcome
these challenges, researchers have proposed a variety of strategies, including data augmentation techniques
to expand training samples, transfer learning to extract features using pre-trained models, and unsupervised
learning to mine the intrinsic structure of data. These methods can alleviate the problem of insufficient data to
a certain extent and improve the performance and application effect of the model.

The advent of synthetic data generation (SDG) provides a promising solution to address the limitations, lack
of representation, or bias in datasets1. Synthetic data generation is a technique that creates new datasets mir-
roring the characteristics and structure of the original dataset. It has found widespread application in various
fields, including data processing and machine learning. These artificial datasets offer advantages such as low
cost, high controllability2.

Tabular data generation (TDG) is a subset of synthetic data generation that specifically targets the creation of
new tabular datasets3. The aim is to generate new tabular data that are representative of the original tabular data
and maintain the underlying structure and relationships between different pieces of table. It is particularly useful
in scenarios where the original dataset is extremely scarce resources, which limiting the scope and effectiveness
of machine learning models, such as rare case related data in medical data, complex ship design parameters.

The advancement in TDG techniques has opened up new possibilities for data-driven applications in various
fields, such as financial modeling1, healthcare analytics4, and scientific research5. By leveraging synthetic datasets
generated through TDG, these applications can now train more accurate and robust machine learning models
despite limited or biased real-world data.

OPEN

1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic
of China. 2Tsinghua‑Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, People’s Republic
of China. 3School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032,
China. 4International Science and Technology Information Center, Shenzhen 518055, People’s Republic of
China. *email: chanw@sz.tsinghua.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-65777-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

The advanced techniques such as generative adversarial networks (GANs)2,6,7 and diffusion propobility
networks3,8–10 have also been employed in TDG to generate more diverse and realistic tabular data. These tech-
niques have enabled the generation of synthetic datasets that are not only representative of the original dataset
but also possess higher levels of complexity and realism.

Despite these advancements, a pivotal challenge persists. A core impediment we encounter is the disparity
between the data requirements of downstream tasks and the impact of synthetic data on their analysis. Merely
generating fake data that superficially resembles real data does not inherently guarantee its non-interference with
downstream analyses. Specifically, the column constraints of the real tabular data, ensuring that the generated
fake data remains consistent in column constraints and content with the real data. Therefore, we assume that
solely focusing on the similarity between generated data and real data is not conducive to downstream task’s
responsibility. Instead, we should pay more attention to the impact of generated data on downstream task analysis.

For example, in the task of generating tabular data for hull parameter generation, if the generative model does
not consider downstream tasks (such as whether the hull parameters meet the constraints of the hull having no
voids), then even though the numerical distribution range of the single column data is similar to that of the real
data, it fails to construct a three-dimensional hull that is usable by humans when multiple columns collectively
form a unified hull. Therefore, it is necessary for such tasks to generate more practical tabular data tailored to
the requirements of downstream tasks.

To imporve the generated data utility, we propose a general TDGGD framework. Specifically, to address the
significant differences in the numerical distribution between fake data and real data, we adopt an improved and
simplified indicator (Easy Indicator, EI) that can determine the authenticity of the generated fake data. To tackle
the issue of low feasibility constraint between fake data columns, we introduce multiple modified fuzzy indicators
(Ambiguous Indicator, AI), which can implicitly learn the constraint relationships between columns. Moreover,
to mitigate the impact of fake data on downstream task accuracy, we incorporate multiple performance indicators
(Hard Indicator, HI) to determine the fake data for key columns according to the requirements of downstream
tasks. The main contributions are the following:

1.	 Novel diffusion model framework which introduces downstream task targets to improve its utility on gener-
ated fake data.

2.	 Efficient modeling of table constraints via easy indicator, ambiguous indicator, and hard indicator to satisfy
feasibility of generated fake data, including focusing on key columns, adhering to constraint conditions, and
enhancing prediction accuracy.

3.	 Providing an effective solution on tabular data scarcity for datasets augumentation.

Related work
Diffusion models
The first diffusion models can be attributed to research11, who proposed the iterative improvement of Gaussian
noise data vectors in multiple time steps to transform random data into data that reflects the statistical charac-
teristics of the training data. Building upon this work, subsequent advancements led to the development of the
Denoising Diffusion Probabilistic Model (DDPM)12.

Following DDPM, numerous researchers have conducted studies based on diffsuion foundations. Diffusion
models have demonstrated advantages over the popular generative model GAN13, particularly in terms of cover-
age and diversity of generated data, rendering sampling time negligible in specific contexts. In order to further
improve computation time, techniques such as Denoising Diffusion Implicit Models (DDIM)14 and Latent Dif-
fusion Models (LDM)15 have been developed, which enhance sampling efficiency by providing greater tolerance
to the Markov process. As for fake data quality, DDPM-based models can specify the direction of generated data
by incorporating gradient-guided guidance information from an additional classifier neural network16. This is
particularly beneficial in tasks such as image generation, where the desired label category of the generated images
can be determined based on human preferences. Moreover, the idea of utilizing additional guidance informa-
tion has been extended to other domains, including text-to-image generation17 and image-to-3D conversion18.

Diffusion models have demonstrated advantages not only in computer vision but also in natural language
generation19, robust learning20, temporal data modeling21, multi-modal learning22, molecular graph modeling23,
and other fields. Multiple survey articles24–28 are constantly emerging, showcasing the growing recognition of
diffusion models in themselves domains. DDPM has established itself as a widely adopted base model, occupying
a prominent position in data generation. It excels in generating high-quality synthetic data, handling complex
constraints, and producing accurate outputs under proper guidance, making it an exceptional deep generation
model for tabular data.

Generative models for tabular data augmentation
Tabular data generation is gaining prominence as a popular modality for creating synthetic data29. Initially, Vari-
ational AutoEncoders (VAEs)30 were the dominant framework, wherein GOGGLE31 employed a structure-based
learning approach to model tabular data, while also regularizing variable dependencies to mitigate overfitting
on smaller datasets. Subsequently, GAN-based methods32,33 have emerged as a foundational framework due to
their capability to effectively model data structures and generate new attack vectors. CTGAN34 introduced a
novel conditional generative adversarial network, incorporating a classifier to provide additional supervision,
thereby enhancing its applicability in machine learning contexts. CTGAN-Conv1D6 combines two architectures
- conditional attribute generative adversarial networks and 1D convolutional architecture, effectively capturing

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

various facets of the desired output and generating realistic samples. More recently, diffusion-based methods have
been explored, such as TabDDPM3, which integrates Gaussian and multinomial diffusion models, along with
quantile transformer and one-hot Encoder superimposed vectors to synthesize mixed-type tabular data. ResBit35
underscores the preprocessing of tabular data, implementing bit compression for discrete data to improve diffu-
sion efficiency. AutoDiff36 situates the diffusion model between the encoder and decoder, exclusively generating
the latent representation. Furthermore, it categorizes data into numerical, binary, and categorical types based
on frequency, and introduces a frequency variable to determine whether to replace new values. TableDiffusion37
incorporates differential privacy stochastic gradient descent into the training process, validating the privacy
protection of mixed-type synthetic tabular data.

Tabular data generation is also widely used in downstream fields. In the economic domain, FinDiff1 introduces
normalization of numerical data and categorical embedding to obtain preprocessed input tabular data, restoring
the original data space, thereby ensuring the security of banking data. In the medical domain, EHR-Safe38 synthe-
sizes electronic health records, particularly addressing highly-varying sequence lengths for time-varying features.
In the engineering domain, ShipGen5 generates constraints that meet ship design parameters, while visualizing
the engineering tabular data of ship structures, resolving time-consuming and inefficient issues in ship design.

To the best of our knowledge, the TDGGD is the initial endeavor to improve a diffusion model for focusing
on prediction accuracy in the downstream task, rather than measuring similarity between real data and fake data.

Motivation
During the training of the diffusion model, the original DDPM12 training loss of the neural network is exclu-
sively utilized for predicting the random Gaussian noise injected in the forward diffusion process. Introducing
additional alterations does not impact the resulting Gaussian distribution. However, in the DDPM sampling
process, the loss influences the distribution of intermediate hidden variable data at each time step. It leads to a
cumulative enhancement in the fidelity of the ultimately generated data.

From the perspective of parameter optimization of neural network models, we have made innovative adjust-
ments to the loss value of the diffusion model’s time step t. Specifically, we have introduced a regularization term
into the original loss value of the diffusion model, which aims to promote downstream tasks. In this way, the
loss function can be represented as:

where Loss (DDPM) is used to improve similarity, and regularization term add complexity.
Without regularization, the model may focus exclusively on minimizing the DDPM loss, potentially leading

to overfitting and a decrease in the quality of generated data. This occurs because the model may learn to produce
outputs that closely match the training data but fail to generalize well to unseen examples. Under regularization,
the model is encouraged to explore a wider range of solutions, allowing it to find a balance between minimiz-
ing the DDPM loss and satisfying the regularization constraints. Although the increase in reasonableness and
generalizability often outweighs this minor loss of precision, it is worth to improve data utility.

Consequently, the TDGGD framework encompasses three indicators to guide the model in generating data
in various directions. By adding these indicators, the model’s optimization direction has become clearer, reduc-
ing the oscillation between training and validation errors. This allows us to find an optimal model strategy for
better model performance.

Learning objective
By training the model on real data X, we get the target Y. To augment dataset, we generate a fake data X ′ , and
ensure that there is a significant difference between X and X ′ under same feasibility. If X and X ′ were too similar,
they would be indistinguishable to downstream tasks, rendering the entire process meaningless.

Then, we share X ′ with downstream scholars and practitioners, and they use X ′ to get the prediction, which
is marked as Y ′ . The goal of the experiment is to ensure that X and X ′ are as different as possible, while trying
to make Y and Y ′ consistent. In the experimental part, we will conduct in-depth analysis of the feasibility and
coverage of fake data of X ′ , and use the prediction target Y ′ and calculated target Ỹ ′ for detailed evaluation.

When analyzing the numerical characteristics of training data, we adopt two ways to achieve the target value:
Y ′ is model inference of downstream tasks by regression model prediction, which is more common in machine
learning tasks; Ỹ ′ is model calculation of downstream by by using the classic simulation analysis, i.e., by formula,
which is more common in operations optimization tasks. However, we must note that most difficult tasks cannot
clearly obtain the formula of the predicted target.

Method
Architecture
The TDGGD framework as a whole is illustrated in Fig. 1. It comprises four main modules, each dedicated to
addressing specific issues in tabular data generation tasks. The subsequent subsections will delineate the key
components. The specific parameters’ configurations are shown in Supplementary Tables S1–S4.

1.	 Denoising Diffusion Probabilistic Models (DDPM): The main pipline generate similar tabular data by utilizing
a Markov chain and probabilistic denoising.

2.	 Easy Indicator (EI): EI modules involves using a binary classification method to evaluate and adjust the gen-
erated fake data. EI allows the generated fake data to retain certain structural characteristics of the original

Entire Loss = Loss (DDPM)+ Regularization

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

real data. At the same time, the generated table data approximates the original data, enabling downstream
models to better understand the data and improve the accuracy of predictions.

3.	 Hard Indicator (HI): HI modules involves identifying key columns based on the requirements of the down-
stream tasks and then generating fake data that meets these requirements through target optimization and
gradient guidance. HI ensures that the generated table data fulfills the needs of downstream tasks while
maintaining data logical consistency.

4.	 Ambiguous Indicator (AI): AI modules implicitly learns the constraints between columns, using these con-
straints to ensure that the generated fake data complies with the inter-column relationships. AI can automati-
cally handle the constraints of the original data, making the generated fake data more aligned with real-world
situations and logical requirements.

Denoising diffusion probabilistic mdels
The Denoising Diffusion Probabilistic Models (DDPM)12 is a generative model that learns to reverse the process
of adding noise ǫ to tabular data X, effectively transforming random noise back into realistic samples X ′ drawn
from a target distribution by utilizing a Markov chain and probabilistic denoising techniques.

The forward process q(x1:T |x0)=
∏T

t=1 q(xt |xt−1) gradually adds noise to an initial sample x0 from the data
distribution q(x0) sampling noise from the predefined distributions q(xt |xt−1) with variances {β1, ...,βT }.

The reverse diffusion process p(x0:T)=
∏T

t=1 p(xt−1|xt) gradually denoises a latent variable xT∼q(xT) and
allows generating new data samples from q(x0) . Distributions p(xt−1|xt) are usually unknown and approximated
by a neural network with parameters θ.

The DDPM used as the main pipeline to generate tabular data,which is inspired by the work3. The entire
algorithm description can be found in supplementary material.

Easy indicator
A significant challenge in tabular data generation is achieving high fidelity of fake data. The Easy Indicator
(EI) employs a binary classification of “True or False” samples to ensure that the generated data retains certain
structural features of the original real data, such as temporal trends and periodic changes. At the same time, the
generated tabular data approximates the original data, enabling downstream models to better understand the
data and improve prediction accuracy.

In more detail, for real tabular data X ∼ Restrict([cj]) with “True” label of 0, construct a similarly scaled set
of values X̃ not satisfying the constraints Restrict([cj]) with “False” label of 1. Randomly merge X and X ′ to form
the new data, corresponding outputting labels . In each diffusion iteration, randomly extract batches of rows
[r1, r2, . . .] as the EI classifier input data. EI uses a simple MLP architecture39, the process is as follows:

The model uses binary cross-entropy to calculate loss and Adam with weight decay regularization40.

(1)Xt−1 =
1

√
αt

(

Xt −
1− αt√
1− ᾱt

ǫθ (Xt , t)

)

+ σt(Z(1− γ))

(2)
MLPBlock(X,X ′) = Dropout(ReLU(Linear(X,X ′)))

Label[0, 1] = {EI(X,X ′)|Linear(MLPBlock(...MLPBlock(X,X ′)))}

Figure 1.   The overall framework for Tabular Data Generation Guided by Downstream Task Optimization. The
green parts are real data and orange parts are fake data.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Moreover, when the downstream task is binary classification, EI is useful for handling data with clear clas-
sification properties. For example, boolean column labels are typically representative of classification columns,
being intuitive and easy to understand. In downstream classification models, the EI helps to judge and predict
category attributes. EI selects features closely related to the downstream task through these indicators and
uses them as input data to train classification models. Therefore, classification columns directly related to the
downstream task can be used to train classifier models without needing to consider dropping certain columns.

Hard indicator
A second challenge in tabular data generation is ensuring the high efficiency of downstream tasks. The Hard
Indicator (HI) determines the key columns based on the requirements of the downstream task, and then gener-
ates synthetic data that meet these requirements through target optimization and gradient guidance.

Specifically, for real tabular data X with target Y = [Yh] , construct h residual neural networks with h target
columns. HI adopts the residual MLP architecture13. For a tabular input X at timestep t with regression label Y,
the process is as follows:

The MLP structure of the residual connection is shown in Fig. 2. HI uses Mean Squared Error (MSE) to
calculate loss and the Adam with weight decay regularization40.

Additionally, when the downstream task is numerical regression, HI helps to filter out features that signifi-
cantly influence the prediction results of the downstream task, i.e., implicitly expressed key columns, and uses
these features as input to train HI. For features not closely related to the current task, HI selectively discards them
or assigns them lower weights, reducing model complexity and the risk of overfitting.

In the experiments, for datasets with only one column for the downstream task, such as the California
House dataset, we additionally expand to five downstream task columns as shown in Fig. 3. By predicting the
maximum, minimum, average, and variance of the target column, we obtain information about data distribu-
tion and central tendency. This information is crucial for understanding the overall characteristics of the data
and for subsequent analysis.

Ambiguous indicator
Another challenge in generating tabular data is the numerical relationship constraints between column values
in the table. The Ambiguous Indicator (AI) implicitly learns the constraints between columns, using these con-
straints to ensure that the generated table data satisfy the inter-column relationships. We can divide all columns
of X into two categories: a set of columns cuj unrelated to the current column cj , and another set of columns crj that
have potential relationships with the current column cj , where u+ r + 1 = n . These potentially related columns
crj have an ambiguous impact on downstream tasks, where discarding them might affect prediction accuracy.
Therefore, the output of the regression model is a randomly selected subset of columns cj as conjectured features,
while the input is all column vectors, with the j-th column filled with zeros.

In more detail, for real tabular data X with xj = 0 , construct n regression networks. For a tabular input X
at timestep t with regression label cj , they are processed by the residual MLP architecture, similar to the hard
indicator.

The residual connection structure is shown in Fig. 2. The loss is calculated using MSE and the model weights
are optimized with the the Adam with weight decay regularization40.

(3)

tembedding = LinearBlock(SinTimeEmb(t))

yembedding = LinearBlock(Y)

yembedding = {HI(X, t)|MLP(X)+ tembedding }

(4)

tembedding = LinearBlock(SinTimeEmb(t))

XAI = [c1, c2, .., cj = 0, cj+1, cn]
Xj,embedding = AI(X, t)|MLP(XAI)+ tembedding

x y

Embedding Layer

X_dim=44 t_dim=256

t

FC Layer FC Layer FC Layer FC Layer

FC Layer

Residual Connec�on

h_dim=1024 h_dim=1024 h_dim=1024 o_dim=256 Y_dim=1

Figure 2.   The structure of hard indicator.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Additionally, AI’s prediction after filling cj = 0 helps distinguish potential missing values or incomplete data.
Considering the integrity and consistency of data, it ensures that the generated data X ′ does not negatively impact
overall data analysis. This not only improves the accuracy of data analysis but also greatly reduces the burden of
manually handling missing values.

Entire procedure
The three aforementioned indicators play a key role in different dimensions of the tabular data during the clas-
sification in EI, regression in AI, and evaluation processes in HI. By selecting appropriate types of indicators and
algorithm optimization methods, we can more effectively achieve the goals of downstream tasks and significantly
enhance the overall performance of the model.

During training Algorithm 1, DDPM is the main pipeline process, which handles the real and feasible tabular
data X with quantile normalization and random noise given the timestep embedding. MSE is used as the model
loss function to compare the difference between the noise removed by the reverse process and the noise added
by the forward process. The training procedure similar with DDPM can be found on Supplementary.

During sampling Algorithm 2, the gradients of EI, HI, and AI are used to improve the DDPM’s sampling
process. Following the multi-objective optimization theory of Pareto optimization, we introduce the hyper-
parameters � to normalize the multiple indicators, which � = 0.5 suggested in research5. We scale the HI and AI
vectors to positive values and sum them to 1 with γ . The sampling process can be formulated as follows:

In practice, it is crucial to correctly select and apply these indicators. Easy indicators, while simple and intui-
tive, may not fully capture the relationships between complex data; ambiguous indicators, although capable of
revealing hidden data relationships, might increase the uncertainty in the model; hard indicators help improve
the accuracy of the model but may lead to excessive complexity. In the future, we need to choose indicator types
and adjust model strategies based on specific problems and data characteristics.

(5)

Xt−1 =
1

√
αt

(

Xt −
1− αt√
1− ᾱt

ǫθ (Xt , t)

)

+ σt(Z(1− γ))

+ γ∇Xt EI(y|Xt)+
1

n

n
∑

i=1

∇XtAI(Ci|Xt)−
h

∑

j=1

�i∇XtHI(Hj|Xt)

Figure 3.   Data preparation. The green parts are real data and orange parts are fake data.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Algorithm 1.   Training Algorithm.

Algorithm 2.   Sampling Algorithm.

Experiments
All experimental results were conducted on a laptop running Windows 11 environment, with 16GB memory, an
NVIDIA GeForce RTX 4060 Laptop GPU, and a 13th Gen Intel(R) Core(TM) i7-13650HX CPU.

Description of the datasets
The cases analysis focuses on a common machine learning dataset “California Housing”41 without explicit column
constraints and a specific downstream task “Ship-D”42 with clear column constraints . The original California
Housing data is fetched from the sci-kit learn library, and the Ship-D dataset is obtained from the authors’
shared links. Both are tabular datasets with at least one regression target column, for which we use the rest of
the columns to fit our model.

The California Housing41 dataset is an open-source dataset for regression problems. It contains 20,640 sam-
ples and features across 8 dimensions. All features are of real number type, and the target column “MedHouseVal”
is also a real number, ranging from 0.15 to 5. This dataset is designed to help machine learning algorithms predict
house prices in different regions of California.

The Ship Parameters Datasets (Ship-D)42 is from the MIT DeCoDE Lab, consists of 30,000 samples. The
dataset contains 44 features for hull parameters and calculates 7 metrics. These 7 performance metrics describe
the quality of a hull, considering the hulls’ hydrodynamics, hydrostatics, and manufacturability. The detailed
calculation formula can be found in the original paper. We note the corresponding symbol representations in
Supplementary.

California house data preparation
We utilized the common California House dataset for regression tasks, where the downstream task is solely to
predict the target column values. Here, we added an additional set of 4 tasks as supplements to the downstream
predictive task with a single-column target, that is, maximum, minimum, mean, and variance. There are sufficient
reasons to consider these as representative of potential future downstream task computations.

For preprocessing the input feature vector X of the original dataset, we constructed the feature vector X ′
required by the EI, which does not meet certain conditions. For the Ambiguous indicator, the input X[cj=0] and
the output cj are set up. The Hard indicator involves the input feature X and five downstream predictive column
vectors Target, Mean, Variance, Min, Max respect to original target, maximum, minimum, mean, and variance.

Through the above data preprocessing steps, we can obtain richer and more accurate feature representations
and provide the model with multiple targets.

Compared methods
As the first method to apply diffusion models to synthetic tabular data, TabDDPM3 merges the continuous
space Gaussian diffusion model and the discrete space polynomial diffusion model in a cascading manner. The
TabDDPM design a combined loss values by mean summation within predictive noise neural network model.
To compared the performance, these are five methods used in following experiments: RTVAE43, CTGAN34,
TabDDPM3, DDPM with classifier16 (EI), ShipGen5(EI+HI). For fairness, the method is coded using the Pytorch
library and maintain the default hyperparameters shared by the authors.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Training performance
The tabular data from the Ship-D and California House datasets were used to train AI and HI residual neural
networks for predicting a target variable. The results of the training have been summarized in Supplementary
Tables S5 and S6, which indicated by the R2 score as a measure of goodness of fit,. All the indicators are approxi-
mately regressed to best fitness, nearly one R2 score. Especially, the EI is the classifier on binary cross entropy
and get 1.0 F1 score, which enable EI in TDGGD sampling with these columns. Additionally, it is mentioned that
Fig. 4 displays the entire plots of the regression prediction versus the simulation calculation for the Hard indica-
tor. The blue dashed line in the figures represents the perfect regression prediction, aligning with the simulation
calculation. It is noted that all the neural networks had high R2 fits and closely hugged the blue dashed line. The
training of neural networks resulted in high-quality fits based on R2 values and results in close alignment with
the blue dashed line in the plots, indicating accurate regression predictions.

Generation performance
Unlike the papers of TabDDPM3, which adopts simple machine learning methods to predict the utility of fake
data, we pay more attention to considering downstream task to ensure the feasibility and coverage of generated
data as Table 1. The meaning and calculation method of each metrics will be explained in Supplementary.

Visual analysis
A two-dimensional principal component analysis (PCA) was performed on the Ship-D dataset to visualize the
distribution of generated fake data in comparison to the original data. Figure 5 refering to Table 3 are maintained
most of the dataset coverage, with normalized coverage ratios of 0.984 for the base strategy, 0.969 for the EI
strategy, 0.969 for the ShipGen, and 0.9699 for the TDGGD. These results suggest that the TDGGD generated
data closely matches the original dataset in terms of coverage, as reflected by the high normalized coverage ratios.

Figure 4.   Comparison of the downstream prediction Y and Y ′ across the California House datasets with
the multiple targets. A perfect prediction (R2=1) is shown by the blue dashed line. The columns from 0 to 4
represent downstream target [’mean’, ’std’, ’max’, ’min’, ’MedHouseVal’] columns. Among them, ’MedHouseVal’
column is the target of downstream task prediction, while the others are constructed task targets.

Table 1.   Evaluation metrics in experiments section.

Compared
variables Evaluation metrics

X X
′ Feasibility rate DCR,NNDR kAnonymization, lDiversityDistinct ,kMap,DeltaPresence, identifiabilityScore

X, Y X
′ ,Y ′ Coverage Realism Normalized Both

Y Y
′ Scaled factor

Figure 5.   Two-dimensional principal component analysis of the Ship-D dataset reveals that the generated
data using a standard DDPM maintained most of the dataset coverage. From left to right, the strategies
corresponding are Base, EI, EI+HI, and EI+HI+AI.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Feasibility analysis
The feasibility metrics evaluate whether the generated data adheres to the laws of the real world. For instance, in
the Ship-D dataset, column constraints ensure that there are no holes on the hull surface and the surface does not
intersect itself. The feasibility rate is calculated as the proportion of samples in the generated table data X ′ that
meet the column constraints, compared to the total number of generated samples. The feasibility rate (ranging
from 0 to 1) indicates the degree to which the generated table X ′ adheres to the column constraints. The higher
value signifies the greater adherence. Please refer to the appendix section for detailed metrics calculations and
constraint rules.

Table 2 reveals that the TabDDPM strategy only achieved half of the generated data meeting the constraints.
However, the DDPM with classifier resulted in all generated data satisfying the column constraints. In the diffu-
sion model’s sample step, the inclusion of extra HI and AI led to a minor decrease in the feasibility rate by 0.02
and 0.08, respectively. The slight decline is acceptable, considering the model’s closer approximation to real-world
data due to the inclusion of downstream task-oriented.

Therefore, our model exhibited a high success rate in generating feasible design vectors X ′ within complex
tabular data spaces. The decline in feasibility satisfaction rate is attributable to the lack of feasibility consideration
during sample generation and the added complexity from the HI and AI strategies. To enhance the success rate
and performance, further work could focus on hyperparameter tuning, thereby achieving a higher success rate
in generating feasible and high-performance data.

Coverage and realism
To quantify the statistical similarity, coverage and realism metrics are utilized between (X,X ′) , (Y ,Y ′) , and (Y,
Ỹ ′ ): An effective data generation model should aim to maintain a lower coverage rate for the generated data X ′
while maximizing the realism of the predicted Y ′ . It requires a balanced optimization of these two metrics in
the model training process. For a thorough breakdown of the coverage and realism calculations, please refer to
the attachment.

The experimental results on are shown in Table 3, the our framework provides better data coverage and bal-
anced realism and privacy protection.

For the Ship-D dataset, the TDGGD shows relatively high coverage and realism for the X data. It implies that
the generated data effectively cover the distribution range of the original data while maintaining high realism.
However, these results may not directly reflect the effectiveness of privacy protection. In terms of standardized
metrics, the similarity in coverage for X ranges from 0.66 to 0.70, while the coverage for downstream task Y is
around 96%, indicating a high coverage rate. Therefore, the coverage rate of X using the TDGGD (0.76) is lower
than that of the ShipGen (0.70). It suggests that under the condition of predicting a similar Y, the TDGGD
generates X ′ with less similarity. The Realism metric also reflects a similar trend. Therefore, our framework
achieve the better data coverage and balanced realism and privacy protection. The higher normalized coverage
value indicates that fake data of TDGGD can effectively cover the distribution range of the original data, aid-
ing in maintaining the utility of data for analysis and machine learning tasks. Although the normalized realism
value is not the highest, it is actually an advantage for privacy protection. Excessively high realism could lead to
generated data being too close to the original data, increasing the risk of leaking privacy information. Therefore,
the TDGGD offers a balanced approach that maintains a certain level of realism while avoiding overexposure
of original data characteristics.

For the California House dataset, Across all three data comparison(X, Y, Ỹ  ), the normalized coverage values
of the TDGGD are relatively low (especially extremely low in the Y). It indicates that in terms of covering the
distribution of the original data, TDGGD may not perform as well as others. For X and Ỹ data comparison, the
normalized realism values of TDGGD are medium or slightly high relative to other methods. However, for the
Y , the values are very low, indicating a significant difference between the generated Y ′ data and the original Y
data. Therefore, TDGGD achieve reduced over-similarity and balanced coverage and realism. The extremely low
normalized realism values in the Y data suggest a substantial difference in characteristics between the generated
and original data, which could aid in protecting privacy by reducing direct correlations between the generated
and original data. Although TDGGD may not be the best in terms of coverage, its performance in realism (par-
ticularly in X and Ỹ  ) indicates that it can preserve certain data characteristics while protecting privacy.

In summary, the framework provides a more balanced solution for privacy protection in Ship-D data com-
pared to other strategies. It maintains data coverage and utility while appropriately controlling the realism of
the data to reduce the risk of privacy breaches. In the California House dataset, the framework focuses more
on reducing direct similarities between data, thus enhancing privacy protection. Although it might come at the

Table 2.   The feasibility rate on the Ship-D dataset.

Strategy Feasibility rate

RTVAE 0.179

CTGAN 0.018

TabDDPM 0.51

DDPM with classifier 1

ShipGen 0.98

TDGGD 0.92

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

cost of sacrificing data coverage, such an approach may be more suitable for applications with higher privacy
protection requirements.

Scaled factor
The most crucial aspect of tabular data generation is measuring the impact of fake data using on downstream
task predictions ( X ′ m−→ Y ′ or X ′ f

−→ Ỹ ′). Please consult the attached document for a comprehensive explanation
of the scaled factor metric calculations. The entire experiments’ results are also shown in appendix.

From Table 4, only in the MB column does the TDGGD outperform all other strategies in terms of the real-
ism of the predicted Y, indicating that for most target columns, the |1− scaledfactor| values of the TDGGD are
significantly higher than the other three strategies. From the data fidelity perspective, these higher values sug-
gest a greater divergence between the generated data and the original data, which might be detrimental to the
data’s practicality. More comprehensively, we constructed Table 4 to analyze the results of the TDGGD in both
model prediction ( X ′ m−→ Y ′ ) and simulation calculation ( X ′ f

−→ Ỹ ′ ), leading to the following observations: For
the Cw column, the |1− scaledfactor| value for Y ′ (0.3418) is significantly higher than for Ỹ ′ (0.0219), indicat-
ing that the data generated using the simulation calculation is more similar to the original data. However, the
|1− scaledfactor| for Y ′ are smaller than Ỹ on the SA1, SA2, Vol2, MB, GC, Mean columns, meaning the data gen-
erated by the model prediction is closer to the original data in most cases. For Vol1, the |1− scaledfactor| values
for both strategies are very close, suggesting that the similarity between the data generated by both downstream
task ways and the original data is not significantly different in the Vol1 target column. Therefore, when applying
the TDGGD, using the model prediction generally produces data more similar to the original Y data in Ship-D

Table 3.   The coverage and realism on the Ship-D and California House dataset. The best results are marked as
bold values in X data and bolditalics values in Y data.

- - Ship-D California House

Methods Data Coverage Realism Converage Realism Coverage Realism Converage Realism

RTVAE X,X ′ 7.4574 4.9556 0.6547 0.5358 161.0204 3.0778 0.9947 0.8101

RTVAE Y ,Y ′ 2.0623 35.5565 0.9702 0.6172 80.6699 28.2033 0.9975 0.8454

RTVAE Y , Ỹ 2.0295 2.5623 0.6966 0.5606 171.4188 1.2100 0.9947 0.8389

CTGAN X,X ′ 7.6455 5.2936 0.6296 0.6088 14.7484 4.4478 0.9993 0.9822

CTGAN Y ,Y ′ 1.2089 4.0176 0.9783 0.9380 23.0101 34.0267 0.9992 0.8942

CTGAN Y , Ỹ 1.7268 2.0848 0.8661 0.6171 10.5772 2.2568 0.9995 0.9911

TabDDPM X,X ′ 10.6569 4.5891 0.6406 0.5566 59.2422 3.1655 0.998 0.8504

TabDDPM Y ,Y ′ 1.3926 0.2712 0.9804 0.7844 61.4435 12.5347 0.9981 0.8824

TabDDPM Y , Ỹ 4.3212 3.2444 0.6181 0.5971 57.2525 1.3514 0.9982 0.8773

DDPM with classifier X,X ′ 12.1152 4.2084 0.6675 0.4714 234.6213 2.2474 0.9930 0.5340

DDPM with classifier Y ,Y ′ 2.5562 0.1843 0.9659 0.5186 250.0662 12.4111 0.9931 0.5400

DDPM with classifier Y , Ỹ 3.0122 2.0105 0.9212 0.6639 245.2265 1.0337 0.9932 0.6124

ShipGen X,X ′ 11.4824 4.2776 0.7687 0.4843 165.6726 2.2640 0.9950 0.5359

ShipGen Y ,Y ′ 2.3382 0.2159 0.9690 0.7459 175.9302 11.9092 0.9950 0.5402

ShipGen Y , Ỹ 4.9948 3.6121 0.854 0.3846 172.0487 0.9720 0.9951 0.7116

TDGGD X,X ′ 12.209 4.4451 0.7005 0.4700 1422.9737 38.0973 0.9605 0.2968

TDGGD Y ,Y ′ 2.4267 0.2834 0.9699 0.7157 6903.9999 5829.55 0.9612 0.2044

TDGGD Y , Ỹ 2.5232 2.1278 0.6886 0.5898 1366.1891 2.7569 0.9640 0.6216

Table 4.   Two dimensions results comparison |1− scaledfactor| : the TDGGD between ( X ′ m−→ Y ′ ) and
( X ′ f

−→ Ỹ ′ ); the predictions between ( X −→ Y  ) with ( X ′ f
−→ Ỹ ′ ) on the TDGGD and ShipGen. The best results

are marked as bold values in X data and bolditalics values in Y data. The entire results on entire methods can
be found as Supplementary Tables S7 and S8.

Target column Y
′

Ỹ ′ Difference Ratio EI+HI+AI EI+HI Difference Ratio

Cw 0.3418 0.0219 – 0.3199 – 93.59% 0.0219 0.3958 0.3739 94.47%

SA1 0.2430 0.3621 0.1191 49.01% 0.3621 0.5202 0.1581 30.39%

SA2 0.4589 0.7742 0.3153 68.71% 0.7742 1.2183 0.4441 36.45%

Vol1 0.2273 0.2239 -0.0034 -1.50% 0.2239 0.5620 0.3381 60.16%

Vol2 0.2031 0.2499 0.0468 23.04% 0.2499 0.3930 0.1431 36.41%

MB 0.0434 0.2017 0.1583 364.75% 0.2017 0.2262 0.0245 10.83%

GC 0.1397 0.9516 0.8119 581.17% 0.9516 1.9513 0.9997 51.23%

Mean 0.2367 0.3979 0.1611 141.66% 0.3979 0.7524 0.3545 45.71%

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

task. The simulation calculation strategy is more suitable in certain specific cases for generating results closer to
the original data like Califronia House task.

From Table 4, in terms of the scaled factor between Y and Ỹ ′ , the TDGGD shows a significant improvement
over ShipGen. More comprehensively, on the Cw column, the |1− scaledfactor| value of TDGGD (0.0219) is
much lower than that of ShipGen (0.3958) with 0.3739 difference, indicating that the TDGGD is closer to the
original data in the target column. On the SA1, SA2, Vol1, Vol2, MB, GC columns, the |1− scaledfactor| values
of the TDGGD method are generally lower than those of the ShipGen, indicating that TDGGD is closer to
the original data in these target columns. On Mean columns, the TDGGD (average |1− scaledfactor| value of
0.3979) is more similar to the original data than the ShipGen (average |1− scaledfactor| value of 0.7524), with
an average difference of 0.3545. Across all target columns, the average ratio of similarity to the original data for
the TDGGD is 45.71%. It means that the |1− scaledfactor| values of the TDGGD are approximately half of those
of the ShipGen on Mean, indicating that its utility is closer to the original data.

Following the same strategy methods and comparisons on California House dataset, we lead to conclusions
similar to above conclusion derived from the Ship-D dataset in Table 5. ( X ′ m−→ Y ′ ) are closer to ( X −→ Y  ),
compared to ( X ′ f

−→ Ỹ ′ ). Our framework show a significant improvement in predicting target columns for
downstream tasks.

Extra advantage: privacy protection
Similar with the privacy metrics in TabDDPM3, we adopt Distance to Closest Record (DCR) and Nearest Neigh-
bour Distance Ratio (NNDR). Unlike de-identified data, which is susceptible to inference attacks, there is no
straightforward one-to-one test between real data X and fake data X ′ . However, data science practitioners might
employ intuitive and quantifiable metrics to measure the differences between them, such as Distance to Closest
Record (DCR) and Nearest Neighbour Distance Ratio (NNDR). The detailed metrics calculations can be found
at the appendix section.

The experimental results are shown in Tables 6 and 7. The TDGGD provides an excellent balance in terms
of privacy protection, especially in the dispersion and diversity of generated data. The results demonstrate that
our framework outperforms the other methods in safeguarding privacy.

For the Ship-D dataset, across the entire dataset ( X + X ′ ), the TDGGD yielded a DCR value of 5.3116, lower
than the ShipGen but higher than both the TabDDPM and DDPM with classifier. It suggests that the TDGGD
excels in maintaining data dispersion, which is beneficial for privacy protection. Specifically, for the fake data
X ′ , the DCR value of TDGGD is the lowest (4.9025), indicating the best data dispersion, thus favoring privacy
protection. Besides, the TDGGD has an NNDR value of 0.8326, slightly lower than the DDPM with classifier,
but higher than both the TabDDPM and ShipGen. For the fake data X ′ , the NNDR value of TDGGD is 0.7959,

Table 5.   Results comparison |1− scaledfactor| between ( X ′ m−→ Y ′ ) and ( X ′ f
−→ Ỹ ′ ) on the MedHouseVal

column of California House. The entire results can be found as Supplementary Tables S9 and S10.

Strategy Y
′

Ỹ ′ Difference Ratio (%)

RTVAE 0.1312 0.1182 – 0.0130 – 9.90

CTGAN 0.1941 0.0960 – 0.0981 – 50.54

TabDDPM 0.6701 0.4416 – 0.2285 – 34.10

DDPM with classifier 0.5031 0.7569 0.2538 50.45

ShipGen 0.4693 0.5847 0.1154 24.59

TDGGD 0.2660 0.9496 0.6836 256.99

Table 6.   The DCR and NNDR on Ship-D and California House datasets.

Dataset Strategy

DCR NNDR

X+X’ X X’ X+X’ X X’

Ship-D

RTVAE 4.6912 3.8366 4.9217 0.8401 0.8589 0.8680

CTGAN 4.7435 3.8366 4.7464 0.8434 0.8589 0.8049

TabDDPM 5.2821 3.8366 6.1570 0.7905 0.8589 0.9127

DDPM with classifier 5.3773 3.8366 6.0015 0.8359 0.8589 0.9066

ShipGen 5.7998 3.8366 5.9438 0.7985 0.8589 0.7443

TDGGD 5.3116 3.8366 4.9025 0.8326 0.8589 0.7959

California RTVAE 0.5973 0.2549 0.2442 0.6304 0.6041 0.4051

House

CTGAN 0.5181 0.2549 0.4870 0.6013 0.6041 0.5715

TabDDPM 0.8066 0.2549 0.8986 0.4961 0.6041 0.5116

DDPM with classifier 0.8815 0.2549 1.6245 0.4924 0.6041 0.6026

ShipGen 1.1297 0.2549 1.3020 0.6071 0.6041 0.6393

TDGGD 1.3312 0.2549 0.0085 0.9406 0.6041 0.2777

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

which is lower than the TabDDPM and DDPM with classifier, but higher than the ShipGen. It indicates that
the TDGGD, while maintaining data consistency, also reduces privacy risks. For the California House dataset,
across the entire dataset ( X + X ′ ), the TDGGD exhibits the highest DCR value (1.3312) among all methods.
Particularly for the fake data X ′ , its DCR value (0.0085) is significantly lower than other methods, suggesting
that the distance between fake data X ′ and the real data X is very small. It proximity reduces the likelihood of
individual data points being identified, thereby enhancing privacy protection. Regarding the NNDR metric,
the overall dataset ( X + X ′ ) performance of the TDGGD is 0.9406, substantially higher than other methods. It
implies that in the TDGGD, the data points exhibit higher similarity, which could potentially increase privacy
risks to some extent. However, for the fake data X ′ , the NNDR value of TDGGD (0.2777) is the lowest, indicating
higher diversity in the generated data and thereby contributing to privacy protection.

Thus, our framework demonstrates its advantages in privacy protection primarily. Compared to other meth-
ods, TDGGD shows superior privachy performance in the generated data X’. Our framework improved disper-
sion makes it more challenging to identify specific original data from the generated dataset. The low NNDR
values indicate that the data X’ generated by the TDGGD possesses higher diversity. Our framework reduces
the similarity between data points, thereby elevating the level of privacy protection. So TDGGD achieve better
dispersion and high diversity.

Summary
Our experimental results provide a clear and compelling analysis of how our novel diffusion model framework
and constraint modeling techniques outperform the baseline models. By incorporating downstream task targets,
the model is adept at producing data that is not only realistic but also aligned with specific application require-
ments. The approach ensures that the generated data is not only useful but also directly beneficial for downstream
tasks, thereby increasing the practical value of our model. By leveraging the novel diffusion model framework
and the efficient constraint modeling, we are able to augment datasets with high-quality, realistic fake data. This
not only enriches the dataset but also enhances the robustness and performance of our model, especially in
scenarios where tabular data scarcity is a significant concern.

Discussion
Convergence and early stopping
Our model’s convergence is determined by monitoring the gradient’s magnitude during training, which correlates
with the loss function’s rate of descent. A very small gradient indicates that the model has likely reached a point
of minimal loss, suggesting convergence. We use Early Stopping to prevent overfitting. This strategy is based on
the model’s performance on a validation set, halting training if no significant improvement is observed after a
set number of iterations. This approach not only prevents overfitting but also optimizes computational resources
by avoiding unnecessary training beyond the point of diminishing returns.

Diffusion timestep T
The diffusion timestep T is a critical hyperparameter in our model. It dictates the pace at which noise is incremen-
tally introduced and then removed during the forward and reverse processes, respectively. The forward process
turns tabular data into normal noise in the timestepT , and the reverse process reconstructs this process . The
optimal value of T is influenced by various factors, including tabular data scales, computational constraints, and
desired model performance. Our experiments utilized a timestep of T = 1000 , as referenced in previous work. We
recognize that different settings for T might improve performance. We recommend more tests and adjustments
to check this out. Additional details on hyperparameter settings are available in the Supplementary Material.

Table 7.   The five privacy metrics on Ship-D and California House datasets.

Datasets Method

kAnonymization lDiversityDistinct kMap DeltaPresence IdentifiabilityScore

gt syn gt syn Score Score Score socre_OC

Ship-D

RTVAE 999 43 999 43 31 42.52 0.0232 0.0298

CTGAN 43 39 43 39 22 2.36 0.3710 0.3490

TabDDPM 3 6 3 6 3 3.33 0.5400 0.0400

DDPM with classifier 3 2 3 2 1 9.00 0.3200 0.0500

ShipGen 3 4 3 4 2 5.00 0.4100 0.0300

TDGGD 3 2 3 2 1 8.00 0.4200 0.0100

California
House

RTVAE 1 3 1 3 5 3.20 0.0230 0.1180

CTGAN 1 1 1 1 3 3.72 0.3190 0.1180

TabDDPM 1 1 1 1 4 3.17 0.3200 0.0600

DDPM with classifier 1 3 1 3 2 9.50 0.1900 0.0500

ShipGen 1 1 1 1 1 2.60 0.1900 0.0300

TDGGD 1 1 1 1 1 0.90 0.0100 0.0010

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

Implications for future research
The findings from our experiments suggest that both convergence conditions and the choice of diffusion timestep
T are pivotal in achieving optimal model performance. Future studies may gain from a closer look at how various
data sets and computing conditions could impact the best choices for these parameters. Moreover, exploring
adaptive methods for dynamically adjusting the timestep during training could provide further insights into
enhancing model efficiency and accuracy.

Conclusions
This study presents an innovative tabular data generation framework, termed TDGGD, integrating cutting-edge
downstream task optimization techniques. Our framework emerges at the intersection of advanced machine
learning models and large-scale data processing, reflecting the surge in demand for data-driven strategies and
AI-readiness in numerous industries. The TDGGD approach showcases superior efficacy in generating tabular
data with intricate inter-column dependencies, which is instrumental for simulating realistic databases. This study
not only pushes the frontier in tabular data synthesis but also enriches the toolkit for overcoming complex data
generation challenges, especially in AI-heavy sectors. Looking into the future, we aim to expand our investigation
into diverse data modalities and a broader range of downstream applications, potentially including real-time
decision-making scenarios and interactive AI systems.

Data availability
The datasets analyzed during the current study are available in the GitHub repository, including the California
House dataset and the Ship Parameters dataset, which can be found at https://​github.​com/​sonar​susha​nt/​Calif​
ornia-​House-​Price-​Predi​ction and https://​github.​com/​noahb​agz/​ShipD, respectively.

Received: 20 January 2024; Accepted: 24 June 2024

References
	 1.	 Sattarov, T., Schreyer, M. & Borth, D. Findiff: Diffusion models for financial tabular data generation. In: Proc. Fourth ACM Inter-

national Conference on AI in Finance, 64–72 (2023).
	 2.	 Ke, Y., Cheng, J. & Cai, Z. Gaussian mixture conditional tabular generative adversarial network for data imbalance problem. In

2023 5th International Conference on System Reliability and Safety Engineering (SRSE) (ed. Ke, Y.) 93–97 (IEEE, 2023).
	 3.	 Kotelnikov, A., Baranchuk, D., Rubachev, I. & Babenko, A. Tabddpm: Modelling tabular data with diffusion models. In International

Conference on Machine Learning, 17564–17579 (ed. Kotelnikov, A.) (PMLR, 2023).
	 4.	 Yoon, J. et al. Ehr-safe: Generating high-fidelity and privacy-preserving synthetic electronic health records. NPJ Digital Medicine

6, 141 (2023).
	 5.	 Bagazinski, N. J. & Ahmed, F. Shipgen: A diffusion model for parametric ship hull generation with multiple objectives and con-

straints. J. Mar. Sci. Eng. 11, 2215 (2023).
	 6.	 Chemmakha, M., Habibi, O. & Lazaar, M. A novel hybrid architecture of conditional tabular generative adversarial network and

1d convolution neural network for enhanced attack detection in iot systems. In 2023 Sixth International Conference on Vocational
Education and Electrical Engineering (ICVEE) (ed. Chemmakha, M.) 156–161 (IEEE, 2023).

	 7.	 Zhao, Z., Kunar, A., Birke, R. & et al. Ctab-gan+: Enhancing tabular data synthesis. Preprint at arXiv:​2204.​00401 (2022).
	 8.	 Kim, J., Lee, C. & Park, N. Stasy: Score-based tabular data synthesis. Preprint at arXiv:​2210.​04018 (2022).
	 9.	 Lee, C., Kim, J. & Park, N. Codi: Co-evolving contrastive diffusion models for mixed-type tabular synthesis. Preprint at arXiv:​

2304.​12654 (2023).
	10.	 Kim, J., Lee, C., Shin, Y. & et al. Sos: Score-based oversampling for tabular data. In: Proc. 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 762–772 (2022).
	11.	 Sohl-Dickstein, J. et al. Deep unsupervised learning using nonequilibrium thermodynamics. In International conference on machine

learning (ed. Sohl-Dickstein, J.) 2256–2265 (PMLR, 2015).
	12.	 Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020).
	13.	 Nichol, A. Q. & Dhariwal, P. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning

(ed. Nichol, A. Q.) 8162–8171 (PMLR, 2021).
	14.	 Song, J., Meng, C. & Ermon, S. Denoising diffusion implicit models. Preprint at arXiv:​2010.​02502 (2020).
	15.	 Rombach, R., Blattmann, A., Lorenz, D. et al. High-resolution image synthesis with latent diffusion models. In: Proc. IEEE/CVF

conference on computer vision and pattern recognition, 10684–10695 (2022).
	16.	 Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 8780–8794 (2021).
	17.	 Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. Preprint

at arXiv:​2204.​06125 (2022).
	18.	 Liu, R. et al. Zero-1-to-3: Zero-shot one image to 3d object. In: Proc. IEEE/CVF International Conference on Computer Vision

(2023).
	19.	 Saharia, C. et al. Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural Inf. Process. Syst.

35, 36479–36494 (2022).
	20.	 Nie, W. et al. Diffusion models for adversarial purification. Preprint at arXiv:​2205.​07460 (2022).
	21.	 Park, S. W., Lee, K. & Kwon, J. Neural markov controlled sde: Stochastic optimization for continuous-time data. In: International

Conference on Learning Representations (2021).
	22.	 Ruan, L., Ma, Y., Yang, H. et al. Mm-diffusion: Learning multi-modal diffusion models for joint audio and video generation. In:

Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10219–10228 (2023).
	23.	 Kim, S., Woo, J. & Kim, W. Y. Diffusion-based generative AI for exploring transition states from 2d molecular graphs. Nat. Com-

mun. 15, 341 (2024).
	24.	 Zou, H., Kim, Z. M. & Kang, D. A survey of diffusion models in natural language processing. Preprint at arXiv:​2305.​14671 (2023).
	25.	 Cao, H., Tan, C., Gao, Z. & et al. A survey on generative diffusion model. Preprint at arXiv:​2209.​02646 (2022).
	26.	 Croitoru, F.-A., Hondru, V., Ionescu, R. T. & et al. Diffusion models in vision: A survey. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (2023).
	27.	 Yang, L. et al. Diffusion models: A comprehensive survey of methods and applications. ACM Comput. Surv. 56, 1–39 (2023).
	28.	 Zhang, C., Zhang, C., Zhang, M. & et al. Text-to-image diffusion model in generative ai: A survey. Preprint at arXiv:​2303.​07909

(2023).

https://github.com/sonarsushant/California-House-Price-Prediction
https://github.com/sonarsushant/California-House-Price-Prediction
https://github.com/noahbagz/ShipD
http://arxiv.org/abs/2204.00401
http://arxiv.org/abs/2210.04018
http://arxiv.org/abs/2304.12654
http://arxiv.org/abs/2304.12654
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2204.06125
http://arxiv.org/abs/2205.07460
http://arxiv.org/abs/2305.14671
http://arxiv.org/abs/2209.02646
http://arxiv.org/abs/2303.07909

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:15267 | https://doi.org/10.1038/s41598-024-65777-9

www.nature.com/scientificreports/

	29.	 Fonseca, J. & Bacao, F. Tabular and latent space synthetic data generation: A literature review. J. Big Data 10, 115. https://​doi.​org/​
10.​1186/​s40537-​023-​00792-7 (2023).

	30.	 Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In: Bengio, Y. & LeCun, Y. (eds.) 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings (2014).

	31.	 Liu, T., Qian, Z., Berrevoets, J. & et al. Goggle: Generative modelling for tabular data by learning relational structure. In: The
Eleventh International Conference on Learning Representations (2022).

	32.	 Engelmann, J. & Lessmann, S. Conditional wasserstein gan-based oversampling of tabular data for imbalanced learning. Expert
Syst. Appl. 174, 114582 (2021).

	33.	 Fan, J. et al. Relational data synthesis using generative adversarial networks: A design space exploration. Preprint at arXiv:​2008.​
12763 (2020).

	34.	 Zhao, Z. et al. Ctab-gan: Effective table data synthesizing. In Asian Conference on Machine Learning (ed. Zhao, Z.) 97–112 (PMLR,
2021).

	35.	 Fuchi, M., Zanashir, A., Minami, H. & et al. Resbit: Residual bit vector for categorical values. Preprint at arXiv:​2309.​17196 (2023).
	36.	 Suh, N., Lin, X., Hsieh, D.-Y., Honarkhah, M. & Cheng, G. Autodiff. combining auto-encoder and diffusion model for tabular data

synthesizing. Preprint at arXiv:​2310.​15479 (2023).
	37.	 Truda, G. Generating tabular datasets under differential privacy. Preprint at arXiv:​2308.​14784 (2023).
	38.	 Yoon, J. et al. Ehr-safe: Generating high-fidelity and privacy-preserving synthetic electronic health records. NPJ Digit. Med. 6, 141

(2023).
	39.	 Gorishniy, Y., Rubachev, I., Khrulkov, V. & Babenko, A. Revisiting deep learning models for tabular data. Adv. Neural Inf. Process.

Syst. 34, 18932–18943 (2021).
	40.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. Preprint at arXiv:​1711.​05101 (2017).
	41.	 Pace, R. K. & Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 33, 291–297 (1997).
	42.	 Bagazinski, N. J. & Ahmed, F. Ship-d: Ship hull dataset for design optimization using machine learning. Preprint at arXiv:​2305.​

08279 (2023).
	43.	 Liu, T., Qian, Z., Berrevoets, J. & van der Schaar, M. GOGGLE: Generative modelling for tabular data by learning relational struc-

ture. In: The Eleventh International Conference on Learning Representations (2023).

Acknowledgements
This research was funded by the Science and Technology Innovation Committee of Shenzhen-Platform and
Carrier (International Science and Technology Information Center), the Natural Science Research Key Pro-
ject of Education Department of Anhui Provincial Government (2023AH051092), the Science and Tech-
nology Innovation Commission of Shenzhen (JCYJ20210324135011030, WDZC20200818121348001,
JCYJ20210324115604012), Guangdong Pearl River Plan (2019QN01X890), High-end Foreign Expert Talent
Introduction Plan (G2021032022L).

Author contributions
FW.J. developed the algorithm, conducted the analysis, and led the writing of article. FW.J, H.Z., FY.J., X.R.,
S.C.,and H.T. collected and processed the data for analysis. H.Z. and FW.J. participated in the validation of
analysis results. W.C., H.Z. and FY.J. supervised and participated in the conceptualization of the project. W.C. is
the leader of the projects. All authors participated in writing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​65777-9.

Correspondence and requests for materials should be addressed to W.K.V.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1186/s40537-023-00792-7
http://arxiv.org/abs/2008.12763
http://arxiv.org/abs/2008.12763
http://arxiv.org/abs/2309.17196
http://arxiv.org/abs/2310.15479
http://arxiv.org/abs/2308.14784
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2305.08279
http://arxiv.org/abs/2305.08279
https://doi.org/10.1038/s41598-024-65777-9
https://doi.org/10.1038/s41598-024-65777-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A tabular data generation framework guided by downstream tasks optimization
	Related work
	Diffusion models
	Generative models for tabular data augmentation
	Motivation
	Learning objective
	Method
	Architecture
	Denoising diffusion probabilistic mdels
	Easy indicator
	Hard indicator
	Ambiguous indicator
	Entire procedure

	Experiments
	Description of the datasets
	California house data preparation
	Compared methods
	Training performance
	Generation performance
	Visual analysis
	Feasibility analysis
	Coverage and realism
	Scaled factor
	Extra advantage: privacy protection

	Summary

	Discussion
	Convergence and early stopping
	Diffusion timestep T
	Implications for future research

	Conclusions
	References
	Acknowledgements

