Table 6 The DCR and NNDR on Ship-D and California House datasets.

From: A tabular data generation framework guided by downstream tasks optimization

Dataset

Strategy

DCR

NNDR

X+X’

X

X’

X+X’

X

X’

Ship-D

RTVAE

4.6912

3.8366

4.9217

0.8401

0.8589

0.8680

CTGAN

4.7435

3.8366

4.7464

0.8434

0.8589

0.8049

TabDDPM

5.2821

3.8366

6.1570

0.7905

0.8589

0.9127

DDPM with classifier

5.3773

3.8366

6.0015

0.8359

0.8589

0.9066

ShipGen

5.7998

3.8366

5.9438

0.7985

0.8589

0.7443

TDGGD

5.3116

3.8366

4.9025

0.8326

0.8589

0.7959

California

RTVAE

0.5973

0.2549

0.2442

0.6304

0.6041

0.4051

House

CTGAN

0.5181

0.2549

0.4870

0.6013

0.6041

0.5715

TabDDPM

0.8066

0.2549

0.8986

0.4961

0.6041

0.5116

DDPM with classifier

0.8815

0.2549

1.6245

0.4924

0.6041

0.6026

ShipGen

1.1297

0.2549

1.3020

0.6071

0.6041

0.6393

TDGGD

1.3312

0.2549

0.0085

0.9406

0.6041

0.2777