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The utilization of Self-compacting Concrete (SCC) has escalated worldwide due to its superior
properties in comparison to normal concrete such as compaction without vibration, increased
flowability and segregation resistance. Various other desirable properties like ductile behaviour,
increased strain capacity and tensile strength etc. can be imparted to SCC by incorporation of fibres.
Thus, this study presents a novel approach to predict 28-day compressive strength (C-S) of FR-SCC
using Gene Expression Programming (GEP) and Multi Expression Programming (MEP) for fostering its
widespread use in the industry. For this purpose, a dataset had been compiled from internationally
published literature having six input parameters including water-to-cement ratio, silica fume,

fine aggregate, coarse aggregate, fibre, and superplasticizer. The predictive abilities of developed
algorithms were assessed using error metrices like mean absolute error (MAE), a20-index, and
objective function (OF) etc. The comparison of MEP and GEP models indicated that GEP gave a simple
equation having lesser errors than MEP. The OF value of GEP was 0.029 compared to 0.031 of MEP.
Thus, sensitivity analysis was performed on GEP model. The models were also checked using some
external validation checks which also verified that MEP and GEP equations can be used to forecast the
strength of FR-SCC for practical uses.

Keywords Self-compacting concrete, Genetic Programming, Fiber-reinforced self-compacting concrete,
Multi expression programming, Gene expression programming

The manufacture of cement prompts CO, emission in atmosphere and depletion of natural resources like lime-
stone etc. The annually manufactured quantity of cement is around 4000 million tons' and it is the most emission
intensive substance from the construction industry which contributes 7% to the global carbon emissions alone?.
The release of these harmful greenhouse gases in atmosphere poses a serious threat to humanity and result in
rising global temperatures, melting of glaciers etc. To reduce the carbon emissions associated with production of
cement, new materials are being introduced with the aim to replace cement in concrete’. These products include
a variety of materials like marble powder, fly ash, silica fume, slag etc. and are known as Secondary Cementitious
Materials (SCMs). The utilization of these SCMs in concrete can help to lessen the ill effects of concrete industry
on the environment for a sustainable future*. The recent advancements in low-carbon concrete composites have
led to the invention of a new form of concrete named as SCC. It was invented in Japan in 1980s°. Soon after its
development, it found many uses in buildings, bridges, and precast concrete components around the world® due
to its advantages such as high structural quality, increased productivity, and durability’. SCC has many properties
that deviate from that of normal concrete. The most important being its ability to flow and compact itself under
its own weight. It can flow and fill the spaces in members that have congested arrangement of reinforcement
or where conventional vibrating methods are not applicable®. SCC also offers many other advantages such as
segregation resistance, improved surface finish, and increased durability. It also leads to improvement in the site
conditions by eliminating the need of mechanical compaction methods such as vibrators that cause fossil fuels
burning and CO; emission’.
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Fibre-reinforced SCC
The SCC mix design is at the heart of achieving the desirable characteristics. Generally, SCC requires higher
water-to-cement ratio and the use of chemical admixtures to impart the flowability characteristics to SCC. Also,
the mix design calls for the use of greater quantity of fine materials to fill the spaces between coarse aggregate'.
Since the use of huge quantities of cement to increase the level of fines can be costly, researchers have suggested
using several mineral admixtures as a replacement of cement in SCC''-!*, The use of these admixtures results
in cost reduction and improve strength and durability characteristics'>2°. Despite the benefits of SCC as an
innovative material, it has the drawback of being a brittle material having low tensile strength and strain capac-
ity like normal concrete??. Thus, the incorporation of fibres is desirable to render a ductile behaviour to SCC
and improve its crack resistance, tensile strength, and strain capacity?. Fibre-reinforced concrete is created by
adding short and discontinuous fibres that are dispersed throughout the concrete matrix**. The various types
of fibres used in industry include steel fibres, glass fibres, polypropylene fibres etc. It has been reported that
using a mix of fibres significantly improves the concrete properties®. Thus, this study used a dataset collected
from literature having a mix of polypropylene and glass fibres. The incorporation of fibres in SCC results in the
development of F-SCC which results in improvement of post-cracking behaviour by preventing the propagation
of small and newly developed cracks®.Thus, F-SCC offers many added advantages compared to non-reinforced
SCC as shown in Fig. 1. However, for effective utilization of F-SCC in construction industry, we must be able to
accurately predict its 28-day compressive strength because it is an indicator of overall concrete quality and dura-
bility. However, to effectively utilize a revolutionary product like FR-SCC we must be able to accurately estimate
its different properties out of which 28-day compressive strength (C-S) is the most important one. The 28-day
compressive strength test is useful to check the overall quality and performance of concrete?*=?°. But it has been
observed that a comprehensive experimental investigation to check the mechanical properties of new concrete
composites is time consuming as a large number of loading conditions, exposure types and mixture composi-
tions must be studied to get an accurate estimate of the properties®’. Also, it is not an easy task to conduct these
experiments in identical and controlled environment due to the inherent complexities and limitations of the
conventional testing procedures®!. Moreover, most of the standard tests are destructive in nature means that the
specimen is destroyed during the test, so this also contributes to the resource wastage and increases construction
waste. Thus, there are many limitations to the testing of concrete composites using conventional testing methods.
To overcome the limitations stated above, researchers have come up with the idea that mathematical models
should be used to predict the different properties of composite materials®”. These machine learning models reduce
the time, effort, and cost required for experimental investigation and accurately predict the behaviour of different
materials under various conditions without conducting experiments®. The literature regarding the utilization of
several famous machine learning techniques to predict different concrete properties is described in next section.
In Section “Research significance”, the particular research novelty and significance has been highlighted fol-
lowed by detailed explanation of the employed algorithms in Section “Research methodology”. Section “Research
methodology” also sheds light on data collection which was used to build the predictive models and statistical
analysis performed on the data while Section “Results and discussions” deals with the results of the algorithms.

Overview of machine learning in civil engineering
During the last few years, civil engineering industry is making a shift towards the sustainable materials and
data-driven decision-making tools like every other industry. In the field of civil engineering, Al is mainly used to
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Figure 1. Benefits of fibre-reinforced SCC.
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optimize material utilization, foster sustainable construction, and improve the overall efficiency and accuracy of
construction processes by using various machine learning and deep learning techniques. Machine learning (ML)
is a subset of artificial intelligence (AI) which refers to the process in which machines learn from vast amounts of
data without any human intervention. ML techniques learn patterns from the data and use that to make informed
decisions for future data. Deep learning is in turn a subset of ML which refers to the use of neural networks to
make predictions on unseen data. Recently, the prediction of various properties of new concrete composites using
machine learning (ML) models has captured the interest of researchers. This is due to the simplicity, accuracy,
cost, and time effectiveness of the ML techniques®?. ML algorithms are basically computational methods designed
to solve complex problems like humans. It has been reported that ML algorithms can discover the hidden patterns
in the data and make predictions based on the learning from the data**. ML techniques have been successfully
applied to solve problems related to finance, biology, engineering etc. In the domain of civil engineering, ML
techniques have found their use in predicting various properties of different concrete and cement composites®,
composite concrete columns and tubes*~*, soil classification and compaction factors etc.***”. ML techniques have
also found their uses in geotechnical and mining engineering to determine slope stability, landslide susceptibility,
and rock fracture prediction etc.*-%. Moreover, ML algorithms have been used to determine service life of
concrete structures in marine environments®' and health monitoring of asphalt pavements®.

Literature review

The prediction of SCC properties using various ML algorithms like Support Vector Machine (SVM), Artificial
Neural Networks (ANN), etc. has increased in the last few years due to the immense potential of SCC to reduce
the concrete associated carbon emissions. In 2021, Farooq et al.®* utilized different ML algorithms including
ANN, SVM and GEP to predict CS of fly ash containing SCC. The study concluded that GEP algorithm is the
accurate one having average error of only 3.71 followed by 5.03 and 5.42 for ANN and SVM respectively. Simi-
larly in 2022, Abunassar et al.** utilized ANN and SVM to predict CS of SCC having silica fume and fly ash as
admixtures. The authors utilized 85 data points to develop ML models that have seven input and one output
variable. The comparison was drawn between the two algorithms based on the R? value when models were used to
predict unseen test data. The results showed that both techniques are reliable and accurate to predict CS of SCC,
but SVM achieved R? = 0.97 compared to 0.96 of ANN thus it is more accurate than ANN. Also, Asteris et al.!?
utilized ANN to forecast strength of SCC having a wide variety of admixtures. These admixtures included slag,
fly ash, limestone powder, silica fume, rice husk ash, etc. The employed a dataset of 169 points and the accuracy
of resulting model was measured using coeflicient of determination. The authors concluded that ANN showcased
a great ability to predict strength of SCC blended with various admixtures having R? value equal to 0.98. In the
same way, the strength estimation of lightweight concrete made by using oil palm by-product and concrete made
with pozzolanic admixtures was done by®>. Moreover, to foster the utilization of recycled construction waste in
concrete, Ashrafian et al. utilized neuro-fuzzy algorithm to provide accurate prediction model for compressive
strength of environmentally friendly concrete containing recycled construction wastes®. The authors gathered
an extensive database of more than 300 concrete mixture proportions having construction waste and used a
neuro-fuzzy algorithm with a Horse Herd Optimization Algorithm (HOA) for the purpose of strength estimation
and reported that this approach performed well than other standalone algorithms and optimization approaches
for prediction of strength.

As far as the subject of prediction of F-SCC properties is concerned, there are very few studies available. The
important ones include the study conducted by Rahman et al.** in which the authors predicted strength of basalt
fibre-reinforced geopolymer SCC. The study consisted of both experimental investigation and modelling using
ANN for structural assessment of concrete beams. The developed model predicted the ultimate moment capac-
ity of beams with 99% accuracy. Also, Saha et al.%” utilized ANN and multivariate regression analysis (MRA)
algorithms to predict CS of SCC reinforced with different fibres including glass and polypropylene fibres. The
author assessed the accuracy of the algorithms based on correlation coefficient and concluded that ANN can
predict CS with a correlation of 0.9919 between actual and predicted values and ANN is more accurate having
low RMSE than RMA. Also, Pakzad et al.?! predicted CS of SCC modified with steel fibres using a data set of 176
instances. The study used several ML algorithms including ANN, convolution neural networks (CNN), support
vector regression (SVR) etc. The models were developed having 9 input variables and only one output variable.
The study concluded that CNN is the most robust algorithm having R? = 0.928 on the test data set. Similarly,
another study®® incorporated crumb rubber having size between 0.5 and 3.5 mm in place of sand in SCC con-
taining silica fume blended with cement. The study used 63 data points and predicted CS, flexural strength, and
elastic modulus by using multivariate regression algorithm. The analysis revealed the excellent performance of
the ML algorithm in predicting various F-SCC properties having R? for CS equal to 0.931 and R? equal to 0.937
and 0.992 for flexural strength and modulus of elasticity respectively. This shows the potential of ML techniques
to accurately model different SCC properties. The summary of the related literature is represented in Table 1.

Research significance

It is evident from Section “Literature review” that ML models like ANN, SVM, RE, and XGB etc. have been
frequently utilized to predict different properties of SCC. However, the subject of utilization of ML algorithms
like MEP and GEP for C-S prediction of FR-SCC is comparatively unexplored. Thus, this study presents a novel
approach to estimate C-S$ of silica fume-based FR-SCC using MEP and GEP algorithms. The motive behind
using MEP and GEP in this study instead of other algorithms like XGB and ANN etc. stems from the fact that
these algorithms are regarded as grey-box models in comparison to black-box models like ANN and XGB etc.
Although ANN and other algorithms are very famous for their accuracy and robustness, these techniques require
the specification of a best model architecture prior to the prediction process and require a large memory®. Also,

Scientific Reports |

(2024) 14:17293 | https://doi.org/10.1038/541598-024-65905-5 nature portfolio



www.nature.com/scientificreports/

S.no. | Algorithm used Year | Waste materials used Output(s) Reference
1 ANN 2016 | Fly ash, Slag, Silica fume, RHA, Limestone CS 10
2 DT, XGB, Light Gradient Boosting 2023 | Nano silica, Limestone, Fly ash, Marble powder | CS 0
3 ANN 2019 | Fly ash, Slag, Silica fume CS J
4 ANN 2017 | Flyash cs 7
5 ANN 2011 | Flyash CS 7‘
6 Intelligent rule-based enhanced multiclass, SVM 2019 | Fly ash CS 7
7 SVR, Deep Learning 2021 | Fly ash CS, Splitting tensile strength 7
8 SVM 2020 | Flyash L-box test, Slump test, V-funnel test, CS “
9 Multivariate adaptive regression spline 2018 | Fly ash Slump test, V-funnel test, L-box test, CS &
10 ANN 2017 | Flyash CS, Slump flow e
11 ANN 2011 | Flyash CS m
12 SVR 2023 | Flyash CS 7
13 GEP 2009 | Fly ash Slump flow, CS, ] Ring 78
14 Multivariate Regression (MVR) 2020 | Silica fume, Crumb rubber Flexural Strength, CS, Modulus of Elasticity | 7
15 Eﬁ;ﬁg}; %fgﬂrrrll&[n)g Machine, long short-term 2021 | Slag, Fly ash, Silica fume Slump flow, J Ring 80
16 Multilayer perceptron network (MLP), KNN 2022 | Fly ash, Slag CS 81

Table 1. Summary of previous related literature.

the large number of hidden layers used in these algorithms (as in case of ANN) makes it almost impossible to
develop an empirical relationship between input and output variables. Thus, these algorithms are called “black
box” models due to the following reasons®:

e Lack of transparency.
® Inability to accurately describe the underlying prediction process.
e Inability to create empirical equations relating input and output parameters.

In contrast, MEP and GEP are often referred to as grey-box models® due to the symbolic representation of
the underlying prediction process and their ability to express the output as an empirical equation®. Also, these
techniques do not require any pre-defined optimization of the model architecture, thus requiring less memory
and computing power®. Therefore, this study is attributed to predicting C-S of FR-SCC using MEP and GEP.

Moreover, despite the fact that FR-SCC offers various advantages over normal concrete, there is a lack of work
focusing on the prediction of FR-SCC strength particularly using the two subtypes of GP used in this study called
GEP and MEP. Thus, this study is conducted to foster the use of FR-SCC in the industry by providing empirical
equations for estimation of its C-S by using MEP and GEP in a comparative manner. The accuracy of models
will be compared by using different error metrices and performance indices. The models will also be checked by
some external validation criteria and their performance will be compared with regression models too.

Research methodology

After the problem identification, dataset was compiled to be used for training of the algorithms. This section
highlights the working mechanism of both MEP and GEP algorithms and also sheds light on the database col-
lection which was used for training the algorithms. The results of several statistical analyses performed on the
gathered database are also represented in Section “Data collection”

Prediction models
The two prediction models used in this study are the subtypes of Genetic Programming (GP). GP refers to a
type of ML algorithms that use evolutionary rules to create and refine computer programs for solving a problem.
Darwin’s principles of natural selection are the basis of genetic programming, and it uses an iterative process to
improve and generate increasingly complex programs®. The process starts with the formation of a population
of programs according to some predefined rules and parameters. These programs are then evaluated using a
fitness functions chosen earlier. After the evaluation, the best performing programs are selected to develop new
programs. This process repeats over several generations with the goal of reaching to a reliable, accurate and
efficient program’®.

One of the main advantages of GP is that it can discover solutions to problems that humans could not solve.
It can find solutions at a much higher pace than humans. This ability makes it an attractive option for solving
problems that need a lot of computing power. However, there are certain limitations to it as well. The selection
of various fitting parameters of GP for a particular problem maybe challenging and the solution may always
not converge. Moreover, it may require a large computing power to find solutions to some problems making it
not the most efficient way to find solutions in some cases®®. But despite these limitations, GP has proven to be a
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useful tool to solve a wide range of problems in fields like finance, engineering, biology etc. The explanation of
two subtypes of GP used in this study is given below:

Gene expression programming (GEP)

GEP is a subtype of genetic programming used to solve problems by evolving a set of mathematical expressions.
The central idea of GEP revolves around using a set of genes which represents a small piece of code or function.
The genes are built using a set of function called primitive functions. These functions can be simple arithmetic
operations like addition, subtraction etc. or more complex mathematical functions such as sine or cosine etc.
These genes are combined using various evolutionary rules to create a complete program®. This process of cre-
ating the programs by combining different genes is similar to that in human beings. That’s why it is called gene
expression programming. The process of solving a problem using GEP begins by creating a random population
of programs called chromosomes. Then these chromosomes are evaluated using a “fitness function”. The good
performing chromosomes are selected for the next generation while the worst performing ones are discarded”.
This process repeats over several generations with the goal of having a population of chromosomes that gives
the highest accuracy. The algorithm constantly modifies and improves the chromosomes while running eventu-
ally coming at a solution as close to the actual as possible®’. The flowchart of GEP algorithm is shown in Fig. 2.

Multi expression programming (MEP)

MEP is a sub technique of GP developed by Oltean®?. It is an optimization method that involves producing and
evolving a set of mathematical expressions to find solution of a problem®*. MEP offers the advantage of handling
a wide variety of problems whether non-linear, multimodal or they have complex constraints. This ability of MEP
stems from the fact that it does not need any previous assumptions about the problem on hand, rather it creates
a population of mathematical expressions and chooses the best performing expressions to be the solution of the
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Figure 2. Flowchart of gene expression programming.
Scientific Reports |  (2024) 14:17293 | https://doi.org/10.1038/s41598-024-65905-5 nature portfolio



www.nature.com/scientificreports/

problem using various evolutionary rules®. The algorithm starts by creating a set of randomly generated initial
expressions. These expressions are then evaluated according to their ability to solve the problem accurately. The
expression which performed good are used to develop a new population of expressions. The new population of
expressions is developed using evolutionary principles such as mutation and crossover on the initially developed
expressions. Crossover means combining two expressions to create a new one while mutation involves altering
an existing expression®. The expression tree representation of both mutation and crossover is given in Fig. 3.
Thus, MEP explores new solutions to the problem and discover potentially better expressions for the represen-
tation of the optimization problem through these two processes. This whole process of generating expressions,
evaluating them, and using them to create a new population is called an iteration. After the creation of a new
generation of expressions, the process continues until the desire accuracy is reached or a predefined criteria
is met. This criterion either be a certain fitness value or a specific number of iterations. The flowchart of MEP
algorithm is shown in Fig. 4.

Data collection

The collection of a reliable dataset is the central point of developing a machine learning model. Thus, to develop
robust models, a reliable database of 78 points is collected from the internationally published literature given
in Table A. Although this dataset is a good starting point to be used for developing predictive models, it is rec-
ommended that future studies should consider much larger datasets so that the algorithms can be trained and
tested on a variety of data and the resulting models can be used on variable data configurations and distribu-
tions. For the selection of most influential parameters to predict C-S, several initial trials were performed, and

Genetic Mutation

(b)

Figure 3. Representation of (a) genetic crossover, (b) genetic mutation.
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Figure 4. Flowchart of multi expression programming.

ultimately the following six input parameters were chosen: water-to-cement ratio, silica fume, coarse aggregate,
fine aggregate, fibres, and superplasticizer. These six parameters will be used to predict the single output i.e., C-S.
To develop a robust ML model, the data should be splitted in two or three sets’%. Thus, the dataset gathered
is split into two parts named training and validation data. Training data (70%) is used to train the model and
validation set (30%) is used to test the model’s accuracy. This splitting makes sure that the model is not overfitted
to the training data and is equally accurate for predicting on the validation data®. The statistical description of
the variables used to develop the models, along with their units and symbols is represented in Table 2. Notice
from the minimum and maximum values of explanatory variables that the dataset is spread over a large range.
The spread of data over a large range ensures a more robust and accurate model'®.

The interdependence between various variables used to develop the models can be checked using two very
useful statistical analysis techniques called correlation matrix and scatter matrix shown in Figs. 5 and 6 respec-
tively. A correlation matrix is used to investigate the effect of explanatory variables on each other. It quantifies
the relationship between different variables used in the study in the form of coefficient of correlation (R). By
looking at the R values between two variables, we can tell the extent to which these variables are related and what
effect does the change in one variable have on the other variable. The correlation between any two variables can

Units | Symbol | Maximum | Minimum | Average | Standard deviation

W/C ratio - X0 0.739 0.39 0.52 0.125

Silica fume kg X1 978 840 913.7 44.62

Coarse aggregate kg X2 870 707 811.29 35.97

Fine aggregate kg X3 190 70 120.35 40.74

Fiber kg X4 1.40 0 0.730 0.57
Superplasticizer kg X5 14.7 7 9.47 1.87

Strength MPa | f./ 68.5 28.24 48.10 12.9

Table 2. Description of the dataset used for model development.
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Figure 5. Correlation matrix of variables.

be positive, negative or zero. Generally, a value above 0.8 indicates the presence of a good correlation between
two variables'®!. The interdependence between multiple variables must be checked before developing a model. If
most of the variables are strongly correlated to each other, then it might cause complications in the model. This is
sometimes referred to as multi-collinearity'?%. Notice from Fig. 5 that strength is affected by all the explanatory
variables used in the study. It is strongly correlated with cement and is having the weakest correlation with the
fibre content. The correlations between other variables are less than 0.8 mostly so they will not give rise to the
problem of multi-collinearity.

Scatter matrix is another tool used widely alongside the correlation matrix. Its main function is to help visual-
ize the bivariate correlations between all the possible combinations of the variables used in the model. It offers
useful insights and helps to visualize different combinations of regressions of the variables used'®. Notice from
Fig. 6 that the x-axis and y-axis of scatter matrix are associated with the variables used in the study. It’s a grid
of different scatter plots and each scatter plot helps to visualize and explore the relationship between any two
variables. It can also be used as a useful tool for outlier detection'®. The frequency distribution histograms of all
variables used to build the models are also shown in the diagonal of the scatter matrix. It is recommended to have
the distribution of variables as close to the normal distribution as possible since it helps in the development of a
reliable model that covers a wide range of variables'®. Thus, it is useful tool that depicts the regression between
variables, distribution of variables and helps in outlier detection simultaneously.

Performance assessment

The performance of both models will be checked using some statistical error metrices suggested in the litera-
ture. These error metrices include mean absolute error (MAE), root mean square error (RMSE), coeflicient of
determination (R?) and performance index (p) etc. The mathematical expressions to calculate these metrices

are given below:

Zlx —yl

Mean Absolute Error (MAE) = N

> (x—y)°

Coefficient of Determination (R?) = 1 — 3
Z (}’ - }’mean)

Y -y’

Root Mean Square Error (RMSE) = N
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. N20
a20 — index = —
N

RRMSE
Performance Index (p) =
1+R
Ntraining — Nvalidati Ny
ObjeCtive Function (OF) = ( Training N Valldﬂtmﬂ)memmg + Z(W)IJVahdﬂﬁan

where x and y represent actual and predicted C-S values while N and N20 represents the total samples and
number of samples for which the ratio of actual and predicted values lies between 0.80 and 1.20 respectively.
An accurate and reliable model should have a higher correlation between actual and predicted values. This
correlation is quantified by the coeflicient of determination (R?). The R? value ranges from 0 to 1, and value
above 0.8 shows an excellent correlation between the actual and predicted values'*. However, R? alone cannot
be used as an indication of accuracy of the model. It is due to the inability of R? to respond to the output being
multiplied or divided with a constant'?”. Thus, the error metrices such as MAE, RMSE have also been identified as
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crucial for evaluating the efficiency of any machine learning model'®®. MAE and RMSE both signify the value of
average error. RMSE gives more weight to large errors, thus it is used for interpretation of large errors. According
to Despotovic et al.!®?, a model is outstanding if RMSE value lies between 0 and 0.11. MAE on the other hand,
associates less weight with larger errors and its value is always less than RMSE. It is used as an indication of the
average error between the experimental and predicted values in the dataset. The newly developed a20-index is
another useful metric to evaluate the performance of ML algorithms. It signifies the number of samples with
deviation more than +20% from the experimental values®®. The ideal value of a20-index is 1 and a model must
have value of a20 close to 1 to be acceptable!!’. The metrices OF and p can have values between 0 and infinity but
a good model must have p and OF value less than 0.2''. Performance index offers the advantage of covering both
the values of R and relative root mean square error (RRMSE) at the same time. Similarly, OF takes into account
the effect of R, RRMSE and the number of data points in training and validation sets. So, it is an indicator of the
overall performance of the model. Thus, a model with lower OF indicates overall superior performance. The
same criteria were used during trials of model development and the models represented in the study are those
that gave the least OF value.

Results and discussions

Formulization of strength using GEP

A specialized software called GeneXpro Tools version 5.0 was used to employ the GEP algorithm in current study.
Before training, the database was split randomly into training and testing sets in 70:30 ratio as specified earlier
using the data split option in the software. Also, there are several fitting parameters of GEP algorithm that need to
be specified before the commencement of actual model training. This is because each algorithm calls for a specific
set of hyperparameters which can only be determined by extensive testing using different set of values. For GEP
algorithm, the important parameters include number of genes, head size, functions, number of chromosomes
etc. The selection right set of values for these parameters is important since the model’s performance is affected
by them. For example, head size and number of chromosomes dictate the convergence of the model towards
the solution. The GEP parameters used in this study were chosen after extensive testing and after consulting
previous studies. The initial parameter values were selected using a previous literature recommendation®!''? and
these values were varied across a wide range of values. The set of values which yielded highest accuracy were
used to build the GEP models for C-S prediction in current study are given in Table 3. Notice from Table 3 that
the number of genes are selected as 4 which indicates that there will be 4 sub-expression trees generated for C-S
prediction. These sub-expression trees will be linked by the specified linking function (addition in our case) to
get the final equation for output prediction. Similarly, the head size and number of chromosomes were carefully
chosen to not to overfit the model or make it computationally challenging because increasing these parameters
beyond a certain point increases the run time of the algorithm and complexity of the model. Also, notice that
the set of functions used to be included in the final equation for C-S prediction consist of simple arithmetic
functions and square root function. It was deliberately done in order to keep the resultant equations simple and
compact for fast computation and implementation.

The size of the population controls the running duration of the program. The model generation was initiated
by selecting the number of chromosomes equal to 10. The number of chromosomes and other hyperparameters
are varied until the equation with highest accuracy is reached with chromosome number at 20 and head size
equal to 4 and 10 respectively. The resulting equation contains the explanatory variables mentioned in Eq. (1).

fer = (x0, %1, X2, X3, X4, X5) 1)

Parameters Settings

GEP parameters

No. of chromosomes 20

No. of genes 4

Head size 10

Linking function Addition
Constants per gene 10

Functions +, = X, +, sqrt
MEP parameters

No. of subpopulations 200
Subpopulation size 500

Code length 40

Crossover probability 0.9

Number of generations 500

Runs 10

Functions +, =5 X, +, sqrt

Table 3. Hyperparameters of GEP and MEP model.
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The addition function is used as a linking function for GEP model with other arithmetic operation such as
multiplication, subtraction, division etc. These functions are chosen to keep the resulting equation simple. The
output of GEP algorithm given in the form of expression tree represented in Fig. 7 is decoded to get Eq. (2). The
subexpressions from each expression tree are linked by the chosen linking function to get the final equation.

f/=A+B+C+D )

where:

Sub-ET 1

Sub-ET 2

Sub-ET 2

Sub-ET 4

Figure 7. Expression tree representation of GEP equation.
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Statistical assessment of GEP

The developed models are assessed by calculating the statistical metrices for both data sets. The summary of
error metrices of both models is given in Table 4. Notice from the table that the R? value of both models is well
above the threshold of 0.8. It can also be seen from the scatter plots given in Figs. 8 and 9. Also, the p values are
significantly below 0.2 which means that there exists a strong correlation between actual and model predicted
values and both models can efficiently predict strength of FR- SCC. Notice that the training MAE of GEP is less
than MEP, which implies that GEP did a good job in optimizing to the training data than MEP. Also, the RMSE
values are lower for GEP. This is because GEP has lesser predictions with large errors as compared to MEP. It is
also indicated by higher a20-index values of GEP. The validation value of a20-index is 1 which means that GEP
does not give a single prediction that deviates more than +20% from the experimental values. Moreover, the
value of objective function which is a useful metric to assess the overall performance of the model is lower for
GEP. Thus, it can be inferred that GEP despite having slightly lesser validation R? than MEP, proved to be more
robust than MEP.

GEP MEP

Training | Validation | Training | Validation
MAE 1.97 2.11 3.02 2.75
RMSE 3.06 2.69 4.74 3.58
R? 0.941 0.965 0.852 0.973
p 0.032 0.028 0.049 0.040
a20-index 0.981 1 0.945 0.956
OF 0.0296 0.031

Table 4. Error metrices of both models.

GEP Training GEP Validation
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Figure 8. Scatter plot of GEP.
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Figure 9. Scatter plot of MEP.

Formulization of strength using MEP

The MEP model development was done using a software known as MEPX 2021.05.18.0. Same as for GEP algo-
rithm, there are several parameter settings that must be done before actual development of a predictive model
by MEP. The most important MEP parameters include subpopulation size, number of subpopulations, set of
functions, code length etc. The initial values of these parameters were chosen using recommendations from
prior studies'*-!!>, After having some preliminary values, these parameters were varied across a wide range of
values and a trial-and-error approach was followed to reach at the set of parameters which resulted in maximum
accuracy of the predictive models. The set of these hyperparameter values which exhibited highest accuracy for
C-S prediction are given in Table 3. The number of computer programs developed by the algorithm are dictated
by the size of subpopulation. A predictive model having large size of subpopulations can be more accurate
and reliable, however it can also be computationally challenging, complex, and time-consuming''¢. Similarly,
number of generations are used to indicate the iterations done by the algorithm before it is terminated. Its value
was selected as 500 in current study for development of both models so that the algorithm performs a large
number of iterations of generating a suitable chromosome for representation of the solution. In the same way,
the parameter code length is directly related with the length of the resulting MEP equation. An abnormally
larger value of code length may result in the equation being too complex and computationally exhaustive while
a smaller value may result in premature convergence of the algorithm and lack of accuracy. Therefore, its value
was also chosen carefully by consulting previous studies and considering many possible values before reaching
at the values given in Table 3 ''7. Moreover, the set of functions to construct the MEP equations involve simple
mathematical functions as an attempt to keep the equations simple.

The model development by MEP is an iterative and evolving process trying to optimize the accuracy of the
model and complexity of the resulting equation. To find an optimal mode, several initial trials were performed
until reaching at one final equation that incorporates the effect of all of the variables and gives the maximum
accuracy. The expression given by MEP is a function of the following input parameters:

fer = (x0, X1, X2, X3, X4, X5) (3)

The output of the MEP algorithm is given in the form a C++ code. It is decoded to get the expression given
by Eq. (4). Notice that the equation is generated by using simple mathematical operations such as addition,
subtraction, division, multiplication, and square root.

2
for= “x—? o) — (T2 T (4)

Statistical assessment of MEP

The error metrices for MEP are given in Table 4. A comparison has been made between training and validation
error metrices of both models and results are shown in Fig. 10. Notice from Fig. 10 (a) that the training MAE
value of GEP is less than MEP which means that there is less average deviation in GEP values from actual values.
Also, the validation RMSE value of GEP is less than MEP which means MEP has more predictions with larger
errors than GEP. It is also clear from training and validation a20 index of MEP. The validation performance
index is closer to zero for GEP than MEP, and the value of objective function is also less for GEP. Thus, it is clear
that MEP has more deviations in its predictions than GEP and it can be concluded that GEP did a good job in
formulating an empirical equation based on the given data that relates all the input variables with the output
with great accuracy. Although, the GEP equation is a bit complex and requires more computing effort than MEP
equation, its performance overall is better than MEP equation as indicated by objective function and a20-index
values. Thus, GEP equation will be considered for further analysis.
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Figure 10. Errors comparison of both models; (a) MAE; (b) a20-index.

External validation of MEP and GEP models

Several external testing criteria are recommended by previous studies to test the developed models. The sum-
mary of these validation checks along with their recommended range in the literature is given in Table 4. The
inclination of the regression lines passing over the origin is depicted by the value of s or s7. For a model to be
accurate, both values must be close to 1. Similarly, the squared coefficient R? and R’ should also be close to 1
for an accurate model®. The values of MEP and GEP equations for these validation checks are also shown in
Table 5. Notice from the table that both the models satisfy the external validation checks, and their values lie in

Expression Criteria MEP | GEP | Reference

s= Z:L(X;;U 085<s<1.15 [099 |099 |[!®
N

s = 2zl <eéx;';r) 0.85<s/<1.15 [0.99 [099 |!®
— (m

— n2 — 2 _ R2
i’ﬁer@R * (1= VIR = K3l Ry > 0.5 0515 |055 |
n 02
R =1 Zalmmd), R~1 098 |099 |0
° i (mr*mf)z,e}’ =sxm 0
R} =1- Ztg:l((;.:y:j’);mf =sxe |RI~1 099 099 ™

Table 5. External validation of MEP and GEP model.
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the recommended range for both models. This means the equations developed by MEP and GEP will accurately
predict C-S of FR-SCC.

Comparison with linear and non-linear regression models

This study used six explanatory variables for strength prediction of FR-SCC. To date, no empirical equation has
been devised using GEP or MEP for strength estimation of FR-SCC that considers the same set of input variables.
So, it is necessary to compare the results of MEP and GEP with Linear Regression (LR) and simple Non-linear
Regression (NLR) models developed with the same set of input variables using the same dataset. Thus, the LR
and NLR equations for calculating C-S of FR-SCC are given by Egs. (5) and (6). It is evident from the series plot
between actual, NLR and LR predicted values given in Fig. 11 that LR and NLR does not perform well on the
dataset. The average error of LR and NLR is 3.2 and 4.2 respectively compared to 2.11 of GEP and 2.75 of MEP.
Similarly, the RMSE value of LR and NLR are greater than that of MEP and GEP. Also, NLR predicted values
have a lesser correlation with actual values and it failed to accurately predict strength at several points and gave
predictions with average error as large as 25. Also, LR and NLR have some other disadvantages as well. The simple
regression models assume some pre-defined equations and normality of the residuals for making predictions'?.
Thus, simple LR and NLR are not suitable for modelling the relationship between strength and the input variables
used in this study. This further reinforces the importance of using machine learning techniques like MEP and
GEP to capture the complex multi non-linear relationships between input and output variables.

fer = 270.55 — 51.2x9 — 0.2x; — 0.03x2 + 0.07x3 + 0.14x4 + 0.23x5 (5)

for = 187.8 — 34x0> — 0.00014x1> — (3.2 x 107°)x2” + 0.0003x3% — 0.04x4> + 0.005x5° (6)

Best model selection

Based on the above discussion, LR and simple NLR displayed less accuracy as compared to MEP and GEP. Out
of the two evolutionary techniques used, GEP performed better than MEP. The comparison between actual,
algorithm prediction and regression predicted values can be well understood by a Taylor Diagram'* as shown in
Fig. 12. It offers the significant advantage of simultaneously using RMSE, coefficient of correlation and standard
deviation of the predicted values to draw comparison between different models. The accuracy of various models
is checked by computing their distance from the target point of experimental data. It can be seen from taylor
diagram that GEP performs well in terms of RMSE and correlation, and it is closer to the reference data line. In
contrast, the MEP shows larger RMSE and lesser correlation and is placed away from reference line. Moreover,
LR and simple NLR has lowest correlation and largest RMSE and are located farther away from actual data.
Hence, GEP comes turns out to be the most accurate followed by MEP. Thus, the overall order of model accuracy
is: GEP>MEP > LR > NLR. Therefore, the sensitivity analysis will be performed on GEP equation as it is more
accurate and have lesser errors than MEP, LR and NLR.

Overfitting of models

A common problem that can arise when dealing with mathematical modelling is overfitting. It happens when
an algorithm fits well to the data it is trained on but cannot maintain its accuracy when exposed to new data'?.
It is important to assess a model against the possible issue of overfitting. A model can be checked for overfitting
by drawing a comparison between the error metrices of its training and validation data'?>. If a model gives pre-
dictions with large errors on validation data, it implies that the model overfitted to the training data and is not
suitable for unseen data and the model is not a generalized one. Regarding the models developed in the current
study, it is evident from Table 4 and Fig. 9 that the validation error metrices for both models doesn’t significantly
vary from the training ones. It means that the model maintains its accuracy when it is used for making predictions

[——Actual  —— LR Predicted —— NLR Predicted]

& 70| LRR2=0.86 LR RMSE =4.81
=3 NLRR?=0.85 NLR RMSE =5.84
£ 60
D
5
= 50
(4]
2
g 40
2
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o
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0 10 20 30 40 50 60 70 80
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Figure 11. Series plot of actual, linear, and non-linear regression predictions.
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Figure 12. Taylor diagram to compare model and regression predicted values.

on new data. Therefore, the developed equations by MEP and GEP have good generalization capabilities and can
be practically used to forecast C-S of FR-SCC.

Sensitivity analysis (SA)

Since the GEP model performed well than its counterpart, sensitivity analysis is performed on the GEP equation
to check the impact of input variables on output. SA tells about the sensitivity of the output to the uncertainties
in the input data. Higher SA value of a variable, higher the effect it has on the output®. It is done on the GEP
mode using Egs. (7) and (8). The results of sensitivity analysis are shown in Fig. 13.

N; zfmax(xi) _fmin(xi) (7)

N:

1
where x; = i th input variable with all other variables constant, fy,a(x;) = maximum predicted output, fiin(x;)
= minimum predicted output.
The results indicate that all input variables contribute to in determine the C-S of FR-SCC. However, water-
to-cement ratio is the crucial factor to predict strength (60%), followed by superplasticizer (12%) and silica
fume (10%). Other variables like fine aggregate (8.27%), fibres (6.77%) and coarse aggregate (2.26%) have
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Figure 13. Relative contribution of input variables.
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comparatively less contribution in predicting the strength. The result of SA depends upon several factors such
as data points used to construct the models and the number of input variables'?. In relation to this, several studies
reported that water-to-cement is most important in prediction of SCC strength!'?”'?. 1t is also evident from the
strong correlation between water-to-cement ratio and strength given in Fig. 4. These studies also highlight the
relative importance of superplasticizer in the output prediction. Ahmed et al.'*® reported the less effective role of
coarse aggregate towards predicting the strength. Moreover, the lesser contribution of fibres and fine aggregate
also aligns with the findings of previous research*?%127,

Conclusions

This study aimed to provide empirical equations for estimating C-S of FR-SCC using MEP and GEP using a
dataset collected from internationally published literature to foster the use of FR-SCC in construction industry.
The following conclusions were drawn from this research:

e Both MEP and GEP algorithms expressed their output as an empirical equation for computing C-S and the
error evaluation revealed that the performance of both algorithms is satisfactory as per the criteria suggested
in the literature.

e The GEP algorithm outperformed MEP having training R* = 0.941 compared to 0.85 of MEP. Also, GEP
yielded lesser predictions with larger errors as depicted by RMSE value of 2.69 compared to 3.58 of MEP.

® The accuracy of the models was also checked by employing external validation checks and the results indi-
cated that both models are accurate. The comparison of MEP and GEP with LR and NLR models also suggests
the same.

e The GEP equation was considered for sensitivity analysis and the results showed that water-to-cement ratio,
superplasticizer, and silica fume are more important parameters to predict strength having contributions
60%, 12% and 10% respectively. However, fine aggregate (8.27%), fibres (6.77%) and coarse aggregate (2.26%)
have relatively less contribution.

Data availability
The data used to develop the models is provided in the article.
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