Table 3 Comparison of Dice scores for urinary system segmentation between the proposed modified U-Net model, U-net with various components, and 2D based models in state of the art with simple multi-class implementation.
 | Avg | Kidney | Ureter | Urinary bladder | |||
---|---|---|---|---|---|---|---|
Total ureter | Proximal ureter | Middle ureter | Distal ureter | ||||
Proposed modified U-net | 0.8623 (± 0.0289) | 0.9613 (± 0.0044) | 0.7225 (± 0.1584) | 0.7121 (± 0.1286) | 0.6558 (± 0.1228) | 0.6085 (± 0.1235) | 0.9032 (± 0.0579) |
U-Net model | |||||||
 Baseline | 0.7835 | 0.8751 | 0.57 | 0.5875 | 0.5427 | 0.5515 | 0.9055 |
 With transposed convolution | 0.8021 | 0.907 | 0.6012 | 0.6124 | 0.595 | 0.6004 | 0.8982 |
 With multi-segmentation decoder | 0.815 | 0.9315 | 0.5998 | 0.6134 | 0.5885 | 0.598 | 0.9137 |
 With ROI extraction and slice windowing | 0.831 | 0.9376 | 0.6309 | 0.6385 | 0.6163 | 0.6005 | 0.9243 |
Other 2D based models in state of the art | |||||||
 UNet++  | 0.7964 | 0.914 | 0.5774 | 0.5888 | 0.5698 | 0.5589 | 0.898 |
 PraNet | 0.8208 | 0.9392 | 0.6501 | 0.6762 | 0.6487 | 0.6087 | 0.8732 |
 nnU-Net | 0.8332 | 0.9423 | 0.6573 | 0.6838 | 0.631 | 0.6163 | 0.8999 |
 Swin-UNet | 0.8481 | 0.9488 | 0.6924 | 0.6974 | 0.6462 | 0.673 | 0.9031 |