Table 4 Estimated performance indices for the studied ML models in the training stage.

From: Machine learning and interactive GUI for concrete compressive strength prediction

Type

Model

R2

WI

RMSE (MPa)

SI

MAE (MPa)

MAPE

MBE (MPa)

Non-ensemble

MLR

0.617

0.870

10.34

0.151

8.23

0.313

0.132

MNLR

0.567

0.836

11.00

0.186

8.54

0.357

− 0.319

SVR

0.597

0.867

10.61

0.138

8.11

0.310

− 0.56

GEP

0.913

0.946

7.21

0.090

5.66

0.201

− 0.072

ANN*

0.972

0.993

2.77

0.036

1.17

0.042

− 0.194

ANFIS

0.871

0.965

6.00

0.073

4.61

0.172

− 0.001

Ensemble

RF

0.985

0.996

2.05

0.027

1.32

0.046

0.077

AdaBoost

0.835

0.946

6.80

0.126

5.63

0.258

− 1.100

XGBoost

0.986

0.996

2.00

0.026

1.38

0.050

− 0.012

CatBoost*

0.987

0.997

1.93

0.025

1.33

0.048

− 0.001

  1. *The bold values indicated the best predictive models.