Table 7 ML Models based on Prediction Error Assessment Using Datasets Obtained on 16 -17 Jun 2022.

From: Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems

Model

Datasets

MAE

MSE

RMSE

SAE

TIME

ARIMA

Training

0.003033

0.000040

0.006341

20.933

3.4701

Testing

0.002191

0.000024

0.004858

10.080

 

BP_Resilient

Training

0.072598

0.008426

0.091792

3,458,400.000

6.4682

Testing

0.048282

0.003549

0.059571

1,022,100.000

 

BP_SOG

Training

0.072567

0.008424

0.091782

3,456,900.000

1.1219

Testing

0.047507

0.003444

0.058682

1,005,700.000

 

KNN

Training

0.007731

0.000111

0.010528

53.360

0.48229

Testing

0.007748

0.000104

0.010219

35.650

 

LR

Training

0.003033

0.000040

0.006341

20.933

2.4908

Testing

0.002191

0.000024

0.004858

10.080

 

LSTM

Training

0.070842

0.052564

0.229270

1524.100

43.779

Testing

0.045438

0.031038

0.176180

791.710

 

Perceptron

Training

0.777920

0.609390

0.780630

6902.000

0.95972

Testing

0.829480

0.689740

0.830510

4601.000

 

RF

Training

0.006211

0.000039

0.003172

21.896

1.5924

Testing

0.002669

0.000025

0.005012

12.280

 

RNN

Training

0.072598

0.008430

0.091817

1532.500

1.2993

Testing

0.047337

0.003429

0.058554

784.090

 

SVM

Training

0.004607

0.000046

0.006777

31.800

1.4908

Testing

0.004554

0.000034

0.005794

20.954