Table 7 ML Models based on Prediction Error Assessment Using Datasets Obtained on 16 -17 Jun 2022.
Model | Datasets | MAE | MSE | RMSE | SAE | TIME |
---|---|---|---|---|---|---|
ARIMA | Training | 0.003033 | 0.000040 | 0.006341 | 20.933 | 3.4701 |
Testing | 0.002191 | 0.000024 | 0.004858 | 10.080 | ||
BP_Resilient | Training | 0.072598 | 0.008426 | 0.091792 | 3,458,400.000 | 6.4682 |
Testing | 0.048282 | 0.003549 | 0.059571 | 1,022,100.000 | ||
BP_SOG | Training | 0.072567 | 0.008424 | 0.091782 | 3,456,900.000 | 1.1219 |
Testing | 0.047507 | 0.003444 | 0.058682 | 1,005,700.000 | ||
KNN | Training | 0.007731 | 0.000111 | 0.010528 | 53.360 | 0.48229 |
Testing | 0.007748 | 0.000104 | 0.010219 | 35.650 | ||
LR | Training | 0.003033 | 0.000040 | 0.006341 | 20.933 | 2.4908 |
Testing | 0.002191 | 0.000024 | 0.004858 | 10.080 | ||
LSTM | Training | 0.070842 | 0.052564 | 0.229270 | 1524.100 | 43.779 |
Testing | 0.045438 | 0.031038 | 0.176180 | 791.710 | ||
Perceptron | Training | 0.777920 | 0.609390 | 0.780630 | 6902.000 | 0.95972 |
Testing | 0.829480 | 0.689740 | 0.830510 | 4601.000 | ||
RF | Training | 0.006211 | 0.000039 | 0.003172 | 21.896 | 1.5924 |
Testing | 0.002669 | 0.000025 | 0.005012 | 12.280 | ||
RNN | Training | 0.072598 | 0.008430 | 0.091817 | 1532.500 | 1.2993 |
Testing | 0.047337 | 0.003429 | 0.058554 | 784.090 | ||
SVM | Training | 0.004607 | 0.000046 | 0.006777 | 31.800 | 1.4908 |
Testing | 0.004554 | 0.000034 | 0.005794 | 20.954 |