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Endmember extraction 
and abundance estimation 
algorithm based 
on double‑compressed sampling
Li Wang *, Yang Bi , Wei Wang  & Junfang Li 

Based on double-compressed sampling, a hyperspectral spectral unmixing algorithm (SU_DCS) is 
proposed, which could directly complete the endmember extraction and abundance estimation. 
On the basis of the linear mixed model (LMM), we designed spatial and spectral sampling matrices, 
obtained spatial and spectral measurement data, and constructed a joint unmixing model containing 
endmember and abundance information. By using operator separation and Lagrangian multiplier 
algorithm, the endmember matrix, abundance matrix and remixing image can be quickly obtained 
by matrix operation. The parameters of the unmixing algorithm, including regularization parameter, 
convergence threshold and spatial sampling rate, are determined using synthetic simulated 
hyperspectral data. The proposed algorithm is applied to two kinds of real hyperspectral data, with 
or without ground truth, in order to verify the effectiveness and reliability of the algorithm. Firstly, 
we provide the performance of the algorithm on real datasets without ground truth. Compared with 
algorithm VCA_FCLS and algorithm CPPCA_VCA_FCLS, the endmember spectral curve extracted by 
the proposed SU_DCS is almost consistent with that obtained by VCA_FCLS, and is more smooth than 
that of obtained by CPPCA_VCA_FCLS. Additionally, the abundance estimation map estimated by the 
SU_DCS has consistency with the results obtained by VCA_FCLS. Moreover, the proposed SU_DCS has 
higher peak signal-to-noise ratio (PSNR) for remixing images with higher computational efficiency. 
Secondly, we provide the performance of the proposed algorithm on four real datasets with ground 
truth, including dataset Cuprite, dataset Samson, dataset Jasper and dataset Urban. We provide 
the results of endmember extraction and abundance estimation from the compressed data under 
different sampling rate conditions. The extracted endmember maintains good consistency with the 
true spectral curves, and the estimated abundance map can also maintain good spatial consistency 
with the ground truth. The comparison results with other four comparative algorithms also indicate 
that the proposed algorithm can obtain relatively accurate endmembers and abundance information 
from compressed data, the reliability and validity of the proposed algorithm have been proved. In 
summary, the main innovation of the proposed algorithm is that it can extract endmembers and 
estimate abundance with high accuracy from a small amount of measurement data.

Keywords  Hyperspectral unmixing, Double-compressed sampling, Joint unmixing model, Endmember 
extraction, Abundance estimation, Unmixing accuracy and efficiency

Hyperspectral images (HSIs) contain rich spatial geometric information and spectral feature information1, and 
are suitable for terrain reconnaissance2, target detection and recognition3–5, vegetation classification6,7 and other 
military and civilian fields. Research on imaging spectrometer8,9, image data analysis and processing10, and image 
interpretation11–15 have become hot research fields. The data obtained by the hyperspectral imager contains the 
spectral information of each pixel, and the corresponding spectral response characteristics of different ground 
substances are different. Due to the insufficient spatial resolution, Liu proposed a two-stream fusion network 
(TFNet)16 and Zhang proposed spatial-spectral reconstruction network (SSR-NET)17 to obtain the high resolution 
images, named as hyperspectral fusion. Then the high resolution fusion images can be used for classification and 
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target detection. There are also other scholars to study the spectral mixing characteristics18,19, especially the linear 
mixture model (LMM), which is the basis of spectral unmixing. The endmember information and abundance 
information obtained can be used for target detection and classification research20–23.

Aimed at the endmember extraction of hyperspectral images, researchers have proposed many practical 
extraction methods from different perspectives, including SiMultaneous Endmember Extraction Algorithm 
(SM-EEA)24 and SeQuential Endmember Extraction Algorithm (SQ-EEA)24. The SM-EEA includes the pixel 
purity index (PPI) algorithm25, the NFINDR algorithm26, the Automated Morphological Endmember Extrac-
tion algorithm27, the Minimum Volume Simplex Analysis28. The advantage of these algorithms is that the end-
members are independent of each other. However, due to the simultaneous extraction of all endmembers, the 
computation is heavy.

The SQ-EEA includes Neville’s Iterative Error Analysis (IEA)29, Nascimento’s Vertex Component Analysis 
(VCA)30 and Chang’s Simplex Growing Algorithm31. The well-designed SQ-EEA can achieve the same results 
as the SM-EEA, and the SQ-EEA can significantly reduce the computational complexity. In particular, VCA 
algorithm finds the orthogonal vector formed by the extracted terminal elements repeatedly, and has low com-
putational complexity and fast extraction speed32.

Abundance estimation mainly includes the algorithms based on least squares and the algorithms based on 
convex geometry theory. The Fully Constrained Least Square (FCLS)33 considers the Abundance Sum to one 
Constraint (ASC) and the Abundance Non-Negativity Constraint (ANC). It regards the abundance estimation as 
the least square problem under the physical constraint of abundance, and obtains the abundance matrix through 
numerical iteration. It is the most widely used abundance estimation method. The methods based on convex 
geometry theory mainly include: OSP algorithm34, non-convex sparse and low-rank constraint with dictionary 
pruning35. The algorithms based on the theory of convex geometry do not have constraints, but they involve 
matrix operations, dimension reduction operations and high computational complexity.

The decomposition of mixed pixels can realize the unmixing, including the independent component analysis36, 
and sparse unmixing algorithms via variable splitting augmented Lagrangian37–39. The sparse unmixing by vari-
able splitting and augmented Lagrangian (SUnSAL) algorithm40 applies the alternating direction method of 
multipliers (ADMM) to solve the constrained sparse recursion problem of abundance estimation, and obtains 
good estimation results. The simplex projection unmixing41 algorithm depends on the geometry of a single shape. 
The nonnegative matrix factorization42 transformed the unmxing problem to the matrix decomposition, which 
obtains wide application. Feng proposed a non-negative matrix decomposition-based unmixing method43, Zhang 
proposed an adaptive region division-based unmixing method44, Hong proposed a low-rank characteristic-based 
unmixing method45, and Ozkan proposed an unmixing method based on neural network46.

Furthermore, to make full use of the spatial information of hyperspectral images, convolutional neural net-
works (CNNs) have also been applied in hyperspectral unmixing. Zhang et al.47 used the CNN to achieve good 
unmixing results for the first time, demonstrating its great potential in the field of spectral unmixing, but the algo-
rithm utilized requires training samples, which limits its application potential. Palsson et al.48 proposed a CNN-
based blind spectral unmixing method that combines the CNN and autoencoder for the first time. SUnCNN is 
the first deep learning-based technique proposed for sparse unmixing proposed by Rasti49, the deep network 
learns in an unsupervised manner to map a fixed input into the sparse optimum abundances. the limitation in 
this algorithm is that it needs to generate the abundances relying on a spectral library. Gao et al.50 proposed the 
cycle-consistency unmixing network by learning cascaded autoencoders (CyCU-Net), by learning two cascaded 
autoencoders in an end-to-end fashion, to enhance the unmixing performance more effectively. Some research-
ers have divided images into cubic patches and used 3-D-CNN to jointly learn spatial and spectral features51, 
but the size of the cube will affect the accuracy of the unmixing drastically. Inspired by the two-stream network 
structure, Chen et al.52 proposed a spatial–spectral adaptive nonlinear unmixing network (SSANU-Net) in which 
the spatial-spectral information of hyperspectral imagery is effectively learned using the two-stream encoder, 
followed by the simulation of the linear–nonlinear scattering component of photons using a two-stream decoder.

The above algorithms can obtain better estimation results for the endmember extraction and abundance esti-
mation of the whole hyperspectral data. However, the amount of hyperspectral data is large and limited to storage 
and transmission. Using compressed sensing theory to process hyperspectral data could solve this problem. The 
traditional mode is compression sampling and reconstruction first, and then spectral unmixing. For example, 
we can utilize the compressive-projection principal component analysis (CPPCA)53 to complete the compress 
and reconstruct process, then use the reconstruction information for unmixing. Given the endmember infor-
mation, the abundance coefficient estimation is completed directly54 or with the help of preserving the intrinsic 
structure invariant55 or sparse representation56,57. The challenge is that we do not have complete endmember 
information before unmxing, then the scholars consider other methods, such as extracting terminal elements 
from the original hyperspectral data58, adding endmember regularization terms59, using endmember library60, 
and utilizing the L1 sparse regularization61, to achieve the spectral unmixing.

The disadvantage of using traditional mode to complete unmixing is that, the reconstruction process has very 
high computational complexity, resulting in a very slow interpretation process. What’s more, the reconstruc-
tion result has lost some effective information, and the accuracy will be affected if the dimension reduction and 
unmixing are carried out based on the reconstruction result. In actual hyperspectral image unmixing processing, 
researchers sometimes cannot measure true pure pixel information due to economic, environmental, policy and 
other factors, which increases the difficulty of accurately extracting endmembers and estimating abundance.

Therefore, the research motivation of this paper is how to estimate the endmember and abundance informa-
tion at the same time through compressed sensing theory, to achieve high-precision and high-efficient unmixing. 
Realizing high-precision and efficient unmixing can significantly improve the accuracy and reliability of remote 
sensing image data, and provide more accurate and comprehensive land cover information. High precision hyper-
spectral unmixing technology can provide technical support for markets such as large-scale farm evaluation, 
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forest tree species identification, water environment monitoring, mineral identification and mapping, and garbage 
classification, promoting the rapid development of hyperspectral remote sensing industry.

Aiming at the problem of unmixing hyperspectral images, we propose the spectral unmixing algorithm based 
on double-compressed sampling (SU_DCS). The contribution of this paper is, the proposed algorithm can obtain 
endmember and abundance information with high accuracy from a small amount of sampled data, solving the 
storage and transmission challenges of hyperspectral images under large quantities of conditions.

Spectral mixing characteristics
To achieve unmixing of hyperspectral images, it is necessary to understand the mechanism of spectral mixing. 
The imaging spectrometer collects hyperspectral data, and each pixel reflects the spectral information of surface 
materials, with different types of ground objects having different spectral responses. Usually, due to low spatial 
resolution, each pixel collected may correspond to a larger ground spatial area, which may contain more than one 
type of ground object. The spectral response of these different ground objects is mixed in a certain proportion, 
resulting in mixed pixels. According to the different mixing modes of mixed pixels, we choose the linear mixing 
model (LMM) to analyze the data characteristics of hyperspectral images.

Using LMM theory, the hyperspectral image is decomposed into endmember matrix and abundance matrix62.

where X ∈ RL×N is the hyperspectral image, N is the pixels included in each band, L represents the number of 
all bands. E ∈ RL×P is the endmember matrix, where, P is the number of endmembers, the spectral vector of the 
p-th endmember is Ep . S = [s1, s2, ..., sN ] ∈ RP×N is the abundance matrix, sn ∈ RP×1 is the abundance vector 
for the n-th pixel.

The n-th pixel vector can be approximately represented by the linear mixture of each endmember.

Since the hyperspectral remote sensing imaging area only contains several types of ground objects, the dimen-
sion of the endmember matrix and abundance matrix will be much smaller than the dimension of the original 
hyperspectral data matrix.

According to the physical meaning of the abundance vector, it should satisfy ASC and ANC.

where 1P and 1N represents the a column vector with all 1, (·)T is the transpose operation, and whose dimensions 
are P and N , respectively.

Spectral unmixing scheme
In this section, we use compressive sensing method to compress hyperspectral images, and propose a spectral 
unmixing method in the compressed domain.

Compression processing can effectively reduce the amount of hyperspectral data, thereby accelerating the 
speed of image processing. Compared with other compressed methods, we have chosen the compressive sensing 
method, which has the following advantages. Firstly, compressive sensing theory can achieve the integration of 
collection and compression, greatly reducing the amount of data stored and transmitted. Secondly, the sampling 
rate in compressed sensing is lower than the traditional Nyquist sampling rate, which helps to reduce the sam-
pling and computational costs of the sampler. This asymmetry in compression and decompression is precisely 
suitable for the characteristics of hyperspectral compression, which is particularly important for scenarios with 
limited resources such as spaceborne devices. In addition, compressive sensing algorithms can maintain good 
performance even in the presence of noise and data loss.

The illustration of proposed SU_DCS framework is shown in Fig. 1. At the sampling end, the hyperspectral 
image is spatially and spectral sampled to obtain spatial and spectral measurements, denoted as double-com-
pressed sampling (DCS). In the unmixing end, we mainly use the LMM model satisfied by the mixed spectrum 
to complete unmixing, which is referred to as spectral unmixing (SU). We establish a joint optimization model 
according to the characteristics of endmember information and abundance information. The operator splitting 
and alternate iteration are used to solve the unmixing model, and finally complete the endmember extraction 
and abundance estimation. According to the process of sampling and unmixing, our proposed algorithm is 
denoted as SU_DCS.

Double‑compressed sampling
In this section, we provide a detailed description of the double-compressed sampling process, including spectral 
sampling and spatial sampling. We also analyzed the characteristics of the measurement data, to ensure that it 
contains rich endmember and abundance information, which can be used for the unmixing process.

Spectral sampling
In this subsection, we describe the spectral sampling process, and analyzed the characteristics of the spectral 
measurement data.

By using spectral compression sampling to reduce the amount of spectral data, the sampled data is a linear 
combination of the original pixel vectors, without losing all absorption features of a certain frequency band. 
Therefore, we can use spectral measurement data to estimate abundance coefficients.

The spectral measurement data is,

(1)X = ES,

(2)Xn = Esn,

(3)1
T
PS = 1

T
N , S ≥ 0,
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where Yspe ∈ RLspe×N is the spectral measurement data, Lspe is the sampling points from each pixel vector, 
Φspe ∈ RLspe×L is the spectral sampling matrix.

The spectral sampling rate is expressed as,

Analyzing the spectral measurement data, we found the compressed measurement data still contains all kinds 
of original ground objects, therefore the number of endmembers can be estimated from spectral measurement 
data. At the same time, we found that spectral measurement data can provide complete abundance information, 
which is beneficial for abundance estimation.

Through analysis, we found that spectral sampling does not require the design of a special sampling matrix. 
According to compressive sensing theory, the random sampling matrix must meet the RIP condition63, and the 
random Gaussian matrix can meet this condition. Therefore, when sampling between spectral bands, we choose 
a random Gaussian matrix to obtain spectral measurement data.

Spatial sampling
In this subsection, we describe the spatial sampling process, and analyzed the characteristics of the spatial 
measurement data.

Spatial compression sampling means that the random measurement matrix is used to sample images of each 
band, and the amount of measurement data in the spatial dimension will be greatly reduced, while the spectral 
dimension remains unchanged.

The spatial measurement data is,

where Yspa ∈ RL×Nspa is the spatial measurement data, Nspa is the sampling points from each band image, 
�spa ∈ RNspa×N is the spatial sampling matrix.

The spatial sampling rate is expressed as,

According to the LMM model, we represent the measurement data as,

(4)Y spe = ΦspeX ,

(5)SRspe = Lspe
/

L,

(6)Y spa = XΦspa,

(7)SRspa = Nspa

/

N ,

(8)Y spa = XΦspa = ESΦspa,

Figure 1.   Illustration of the proposed SU_DCS framework.
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Compared with Eq. (1), we found that the measurement data Yspa ∈ RL×Nspa also includes the endmember 
matrix E ∈ RL×P , but due to the presence of spatial measurement matrix, the abundance matrix has changed.

Let SCS = S�spa represent the compressed abundance matrix, and the spatial sampling can be rewritten as,

Through this operation, we found that the spatial measurements can be separated into compressed abundance 
matrix and original endmember matrix46. We can assume that, if the compressed abundance matrix can meet 
constraints of ACS and ANC,

where 1P and 1Nspa represents the a column vector whose elements are all 1 and whose dimensions are P and 
Nspa , respectively.

Then the spatial measurement values meet LMM, thus we can utilize mature endmember extraction algo-
rithms to extract endmembers from spatial measurements. The problem is transformed into how to design a 
special spatial sampling matrix, so that the spatial measurements could meet the LMM. Only in this way, the 
spatial measurement data can be used for the unmixing process.

Spatial sampling matrix design
In this subsection, we need to design a spatial sampling matrix to ensure that spatial measurement data pro-
vides usable endmember information for unmixing. Our focus is on analyzing the composition of the matrix 
SCS = S�spa , to ensure that it satisfies ASC and ANC.

Let S
(

p, n
)

 represent the element of row p , column n in S , the ASC and ANC constraints can be described as,

The element of row p , column k in SCS is described as,

where Φspa(n, k) is the element of row n , column k in �spa.
Firstly, ANC constraint indicates that each element of SCS is nonnegative. If each element �spa(n, k) of the 

spatial measurement matrix is positive, and multiplied by the original abundance matrix S , it can ensure that 
each element of SCS is positive. That is to say, the first condition of the spatial measurement matrix is that each 
element is a positive number.

Secondly, ASC constraint indicates that the sum of each row in SCS is 1. We calculate the sum of column k,

Analyze Eq. (13), the sum of column k in SCS equals to the sum of column k in �spa . In other words, if SCS is 
required to meet ASC, the sum of each row in matrix �spa is required to be 1. The second condition of the spatial 
measurement matrix is that the sum of each row is 1.

Based on the above analysis, we conclude that when the spatial measurement matrix satisfies the following 
conditions, the compressed abundance matrix can satisfy ASC and ANC. Based on the analysis in Sect. “Spectral 
sampling”, at this point, the spatial measurement data can meet the LMM requirements. And mature endmem-
ber extraction algorithms can be used to complete endmember extraction, providing necessary conditions for 
unmixing.

There are many matrices that meet the required conditions required by Eq. (14), such as identity matrices. The 
sum of each row in the identity matrix is 1, and each element is non negative. According to the requirements of 
the spatial measurement matrix, we choose any Nspa rows from the identity matrix as the spatial sampling matrix 
�spa . The advantage of this choice is that there are many zero elements in the matrix, which can save storage space.

After spatial sampling of each band with such measurement matrix, it can ensure that the spatial measurement 
data Yspa still meet LMM, and then the spatial measurement data can provide sufficient endmember informa-
tion for unmixing.

Looking back at the design process of the spatial measurement matrix, our original intention was to provide 
sufficient endmember information for the unmixing process using spatial measurement data. Mature endmember 
extraction algorithms are all used for the raw hyperspectral data which satisfies LMM. Therefore, we envision 
that if spatial measurement data can satisfy LMM, existing endmember extraction algorithms can be utilized. 
Then, we analyzed how the spatial measurement data can meet the conditions of LMM, and found that the 

(9)Y spa = SCSE,

(10)1
T
PSCS = 1

T
Nspa

, SCS ≥ 0,

(11)
P
∑

p=1

S
(

p, n
)

= 1, S
(

p, n
)

≥ 0, 1 ≤ n ≤ N , 1 ≤ p ≤ P,

(12)SCS
(

p, k
)

=
N
∑

n=1

S
(

p, n
)

Φspa(n, k),

(13)
P
∑

p=1

SCS
(

p, k
)

=
P
∑

p=1

N
∑

n=1

S
(

p, n
)

Φspa(n, k) =
N
∑

n=1

Φspa(n, k)

P
∑

p=1

S
(

p, n
)

=
N
∑

n=1

Φspa(n, k),

(14)







Φspa(n, k) ≥ 0, 1 ≤ k ≤ Nspa, 1 ≤ n ≤ N
N
�

n=1
Φspa(n, k) = 1, 1 ≤ k ≤ Nspa

,
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compressed abundance matrix is required to meet ASC and ANC. Subsequently, through analysis, we found that 
if the compressed abundance matrix can satisfy ASC and ANC, the spatial measurement matrix is required to 
satisfy the conditions of nonnegative and each row is summed to 1. Finally, we consider the factor of storing the 
measurement matrix space, and select several rows from the identity matrix as the spatial measurement matrix. 
In this way, we have completed the design of the spatial measurement matrix, ensuring that the spatial measure-
ment data can provide sufficient endmember information for subsequent unmixing.

Spectral unmixing algorithm
This section gives a detailed introduction to the spectral unmixing algorithm. Firstly, we utilize spatial and spec-
tral measurement data, as well as LMM, to construct a spectral unmixing model. Secondly, we use the ADMM 
method to solve the unmixing model. Finally, we present the process of the unmixing algorithm.

Unmixing model construction
In this subsection, we present the construction process of the spectral unmixing model. According to the algo-
rithm framework shown in Fig. 1, we found that three key elements are required for unmixing, namely, the 
endmember number, the endmember matrix and the abundance matrix.

In the unmixing end, the known information we have is that, spatial measurement data can provide rich end-
member information. Spectral measurement data includes all types of land cover, which can be used to estimate 
the endmember number, and it also provides sufficient information for abundance estimation. We also know 
that the product of the endmember matrix and the abundance matrix is the original hyperspectral data, which 
satisfies LMM. Based on these information, we have listed the following equation.

Combined with the mathematical description of raw hyperspectral data, the endmember matrix and abun-
dance matrix should meet the following requirements at the same time.

Analyze the unmixing model in Eq. (16), it is a constrained optimization problem. We transformed it into 
an unconstrained optimization problem using the Lagrange multiplier method. For the obtained multivariate 
functions, by taking the partial derivative of each variable, we can obtain a local optimal solution that is consist-
ent with the original constrained function.

Therefore, we take the endmember matrix E and abundance matrix S as optimization variables, and introduce 
auxiliary variable X to establish a joint optimization unmixing model.

Where, �1 and �2 are the regularization optimization parameters of the unmixing model for the spatial meas-
urement data and the interspectral measurement data. In the calculation process, if the value of the abundance 
coefficient is negative, we set this value to 0 to ensure that the abundance coefficient meets the ANC. We adopted 
the method proposed by Lu64 to ensure that the abundance coefficient meets the ASC constraint.

Unmixing model solution
In this subsection, we provide a detailed introduction to the solution process of the spectral unmixing optimiza-
tion model.

The analysis of Eq. (17) shows that the joint optimization unmixing model contains three unknowns, namely, 
X , E and S , with high computational complexity. Using the idea of operator splitting, the model is divided into 
three sub problems, and the three unknowns are updated by alternating direction iteration. In other words, we 
utilize the ADMM method for solving this unmixing model.

Assuming the current number of iterations is t  , optimize X , E and S , respectively. Through iterative optimiza-
tion, we can obtain endmember matrix, abundance matrix and remixing image by matrix operation.

According to the analysis in Sect. “Spectral sampling”, the spectral measurement data includes all types of 
ground objects in the hyperspectral image. We used the HySime algorithm to estimate the number of endmem-
bers, and the detailed process can be found in reference63.

(15)

{

Y spa = ESΦspa

Y spe = ΦspeES

X = ES
,

(16)







min
S,E

�X − ES�2F s.t. Y spa = ESΦspa, 1
T
P S = 1

T
N , S ≥ 0

min
S,E

�X − ES�2F s.t. Y spe = ΦspeES, 1
T
P S = 1

T
N , S ≥ 0

,
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�X − ES�2F + �1

∥

∥Y spa − ESΦspa

∥

∥

2

F
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2
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
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t+1

,X
�

,
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We use VCA algorithm to obtain the initial value of endmember matrix.

The spectral measurement process can be rewritten as,

Under the condition that the measurement data Yspe , measurement matrix �spe and endmember matrix Ê0 are 
known, solving the abundance matrix S belongs to solution of overdetermined equations. We obtain the initial 
estimate value of abundance matrix using the least square method.

The initial estimate of hyperspectral image is,

The iterative optimization process is as follows.
a) Fix X and S to solve E . The unconstrained form of the endmember information optimization problem is,

Let L
(

Ŝ
t
,E, X̂

t
)

 rewrite as,

Let the derivative 
∂L

(

Ŝ
t
,E,X̂

t
)

∂E
= 0 , the solution of Eq. (24) can be obtained, namely,

We sort out Eq. (27) and get,

To solve Eq. (29), we make,

Then rewrite Eq. (30) as follows.

To solve Eq. (31), we first determine the dimensions of each matrix. From the above analysis, the dimen-
sion of each matrix is: X ∈ RL×N , S ∈ RP×N , Φspa ∈ RN×Nspa , Yspa ∈ RL×Nspa , Φspe ∈ RLspe×L , Yspe ∈ RLspe×N , 
C ∈ RL×(N+Nspa) , D ∈ RP×(N+Nspa) , A ∈ RL×L , B ∈ RP×P , F ∈ RL×P . According to the dimensions of matrix and 
the characteristics of equation, we find that the equation described in Eq. (31) belongs to Sylvester equation, 
which can be solved by Bartels–Stewart algorithm. The update endmember matrix is expressed as,

b) Fix X and E to solve S . The unconstrained form of the abundance information optimization problem is 
expressed as,

(20)Ê
0 = VCA

(

Y spa, P̂
)

,

(21)Y spe = ΦspeÊ
0
S,

(22)Ŝ
0 =

[

(

ΦspeÊ
0
)T(

ΦspeÊ
0
)

]−1(

ΦspeÊ
0
)T

Y spe ,

(23)X̂
0 = Ê

0
Ŝ
0
,

(24)
Ê
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E
L
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Ŝ
t
,E, X̂

t
)

= argmin
E

{
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∥

∥

2
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2
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2

F
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The second is to terminate the iteration when the maximum number of iterations is reached.

The setting of convergence threshold and maximum number of iterations will be discussed and analyzed in 
Sect. “Convergence threshold selection experiment”.

Execution process of unmixing algorithm
In this subsection, the realization process of SU_DCS is summarized as follows.
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SU_DCS
We analyze the computational complexity of the SU_DCS algorithm. The computation time of SU_DCS is 

primarily dominated by the computations of the endmember extraction in Step 5 and the abundance estimation 
in Step 6. We utilize Bartels–Stewart algorithm to optimize the unmixing process, and its computational complex-
ity is O

(

P3
)

 , the computational complexity of Step 7 is O(LPN) . The complexity of one loop is O
(

2P3 + LPN
)

 , 
after T iterations, the total computational complexity is O

(

2TP3 + LPNT
)

 . In the case of 2P3 < LPN , the total 
computational complexity could be simplified as O(LPNT).
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Experimental results and analysis of simulated hyperspectral data
In this section, we conducted some experiments on simulated hyperspectral data using the proposed algorithm 
to verify its feasibility and robustness. Firstly, we provide the construction of simulated hyperspectral data and 
the evaluation indicators of the algorithm. Then, algorithm parameters experiments are conducted, including 
regularization parameters, convergence threshold, spatial sampling rate, etc., to determine the parameters when 
the algorithm achieves optimal performance. Finally, we present the experimental results of the proposed algo-
rithm SU_DCS on simulated hyperspectral data and analyze them.

Simulated hyperspectral data and evaluation indicators
In this subsection, we provide the construction of simulated hyperspectral data, and indicators for evaluating 
algorithm performance.

The simulated hyperspectral data is composed of the endmember spectral curve multiplied by abundance 
matrix, added Gaussian white noise. We choose some spectral curves from USGS spectral database65 as the 
endmembers for the simulated hyperspectral data.

According to the analysis in Sect. “Spectral mixing characteristics”, the abundance matrix needs to satisfy 
ASC and ANC. That is to say, each element of the abundance matrix is nonnegative, and the sum of each row is 
1. According to the definition of the Dirichlet distribution function, the matrix elements it generates are non-
negative and the sum of each row is 1, satisfying ASC and ANC. Therefore, we can use the matrix generated by 
the Dirichlet distribution as the abundance coefficient to synthesize hyperspectral data.

In the simulated hyperspectral data, the image size is 256 × 256, the number of bands is 224, and four miner-
als (Carnallite, Ammonioalunite, Biotite, Actinolite) were selected as endmembers, and the abundance matrix 
obeyed Dirichlet distribution.

We use the spectral angle distance (SAD) to evaluate the accuracy of the endmember information extracted,

where Ep and Êp represent the p-th true endmember vector and the estimated endmember vector, respectively.
We use the root mean square error of the abundance (RMSE) to evaluate the accuracy of the abundance 

estimation.

where Sp and Ŝp represent the true abundance matrix and the estimated matrix for the p-th endmember, 
respectively.

According to the above unmixing algorithm execution process, utilizing the endmember matrix and abun-
dance matrix estimated by SU_DCS can obtain the remixing image. In the absence of true endmember informa-
tion and abundance information of hyperspectral image, we can also use peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM)46 to measure accuracy of the algorithm. The PSNR is defined as,

where X l and X̂ l are the original image and remixing image for the l-th band, max (X l) is the peak value of 
X l , and MSE
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)

 is the mean square error,

SSIM is defined in Eq. (51), the parameters can be referred to Ref.46.

Parameter selection experiment on SU_DCS algorithm
In this subsection, we conducted experiments using SU_DCS on simulated hyperspectral data to analyze the 
effects of regularization parameters, convergence threshold, and spatial sampling rate on algorithm performance. 
Based on the experimental results, we have decided on the parameter selection when the algorithm achieves 
optimal performance.

Regularization parameter selection experiment
In the unmixing model, �1 and �2 is selected as the regularization optimization parameter of spatial measurement 
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through regularization parameter selection experiment. Using the unmixing algorithm SU_DCS samples and 
unmixes simulated hyperspectral data.

The range of two sampling rates is 0.1–0.5, the interval is 0.1, the maximum number of iterations is set to 20, 
and the algorithm iteration ends after the maximum number of iterations. The variation range of the regulariza-
tion parameter is 10−5–105 , with an interval of 10. The SAD of the estimated and true endmember spectrum, 
the RMSE of the estimated and true abundance matrix, and the PSNR results of remixing image are shown in 

Figure 2.   Regularization parameters performance on unmixing algorithm. (a) SAD, (b) RMSE, (c) PSNR.



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17934  | https://doi.org/10.1038/s41598-024-68382-y

www.nature.com/scientificreports/

Fig. 2. At this time, the two sampling rates are both 0.1, and the regularization parameters are expressed in 
logarithmic coordinates.

Seen from Fig. 2a, under the condition that the regularization parameter �2 is fixed, the SAD increases with 
the increase of �1 . Under condition of �1 fixed, SAD decreases with the increase of �1 , and tends to be stable when 
it reaches the order of magnitude 102 , indicating that smaller �1 should be selected. By comparing Fig. 2a,b, it is 

Figure 3.   Convergence threshold performance on unmixing algorithm. (a) SAD, (b) RMSE, (c) PSNR, (d) 
Relchg.

Figure 4.   Spatial sampling rate performance on unmixing algorithm. (a) SAD, (b) RMSE.
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found that the influence of regularization parameters on the accuracy RMSE of abundance estimation is consist-
ent with that on the accuracy SAD of endmember estimation.

Seen from Fig. 2c, when the regularization parameter �1 is fixed, the PSNR of the remixing image increases 
with the increase of �2 . When the magnitude order of �2 is selected as 102 , the PSNR tends to be stable. Accord-
ing to the experimental results in Fig. 2 (a), (b), (c) and other sampling rate conditions, when the magnitude 
order of �2 is selected as 102 and the parameter �1 is selected as 10−1 , the accuracy of endmember, abundance and 
remixing images can reach the optimum. In the subsequent experiments, we selected �1 = 0.1 and �2 = 100 as 
the regularization parameters of unmixing algorithm.

Convergence threshold selection experiment
Using the unmixing algorithm SU_DCS samples and unmixes the simulated hyperspectral images, and studies 
the impact of convergence threshold on the algorithm performance. The range of two sampling rates is 0.1–0.5, 
the regularization parameter is set to �1 = 0.1 and �2 = 100 , the maximum iteration number is 30, and the 
iteration ends after 30 iterations. When the two sampling rates are both 0.5, the SAD, the RMSE, and the PSNR 
results of the remixing image are shown in Fig. 3.

With the increase of iteration times, the SAD of extracted endmember spectrum and true spectral curve is 
kept within 9× 10−4 , which indicates that the initial value of endmember obtained from spatial measurement 
data for the first time is very accurate. The RMSE of the estimated abundance matrix is kept within 3× 10−2 , 
indicating that iteration is helpful to improve the accuracy of the abundance estimation. As the number of itera-
tions increases, the PSNR of the remixing image increases. After 20 iterations, it gradually becomes stable, and 
the relative change of the adjacent remixing image gradually reduces to 10−14 . Considering the accuracy of the 
unmixing, the maximum iteration number is set to T = 20 , and the convergence threshold is set to Th = 10−14.

Spatial sampling rate selection experiment
From the results of convergence threshold selection experiment, we find that VCA algorithm can effectively 
extract accurate endmember data from spatial measurement data. Therefore, we consider conducting spatial 
sampling rate selection experiment to analyze the impact of spatial sampling rate on the unmixing accuracy. In 

Figure 5.   The simulated dataset (a) four endmember spectral curves from USGS, (b) scatterplot of the 
fractional abundances, (c) the enlarged subgraph with pure pixel marked.
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the experiment, the spatial sampling rate is 0.005 ~ 0.1, the interval is 0.005, and the spectral sampling rate is 
0.1–0.5, the interval is 0.1.

Under different spectral sampling rates, the SAD and RMSE results versus the spatial sampling rate are shown 
in Fig. 4. When the spatial sampling rate increases from 0.005 to 0.015, SAD decreases greatly, followed by small 
amplitude oscillation, and reaches a new minimum after sampling rate increases to 0.045. RMSE reaches the first 
minimum after the spatial sampling rate increases to 0.02, and then keeps a small amplitude oscillation. Under 

Figure 6.   Spatial sampling rate performance on unmixing algorithm. (a) sampling rate is 0.1, (b) sampling rate 
is 0.3, (c) sampling rate is 0.5
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the condition of different spectral sampling rates, the accuracy of the endmember and abundance estimation 
can be kept at a high level. The experimental results can show that even if hyperspectral images are sampled at a 
lower spatial sampling rate, the measured data can still contain accurate endmember information for endmember 
extraction. Therefore, in the subsequent experiments, we set the spatial sampling rate to SRspa = 0.05 , and then 
consider the effect of spectral sampling rate on the unmixing accuracy.

Pure pixel ratio experiment
The premise assumption of the endmember extraction algorithm is that hyperspectral images contain available 
pure pixels. We define the ratio of pure pixel number to all pixels as pure pixel ratio, denoted as PPR. If the pure 
pixel ratio is high, that is, the mixing degree of hyperspectral images is not strong, the difficulty of extracting 
endmembers is relatively low. Since the accuracy of endmember extraction will further affect the accuracy of 
abundance coefficient estimation, we firstly analyze the impact of pure pixel ratio on endmember extraction.

Now we generate a set of simulated datasets with different pure pixel ratio. The image size is 256 × 256, the 
number of bands is 224, and four minerals (Carnalite, Ammonioalute, Biotite, Actinolite) were selected as 
endmembers. The abundance matrix should satisfy the condition that each element is positive and the sum of 
each row is 1. Each row of the abundance matrix represents the component coefficients of each type of feature 
in the pixel. When one element in a row of the abundance matrix is significantly larger than the other elements, 
it is considered as a pure pixel. Therefore, we change the pure pixel ratio of the simulated data by changing the 
abundance matrix. To increase the PPR from 10 to 100%, SU_DCS was used to perform endmember extraction 
and abundance estimation, and studies the impact of pure pixel ratio on the algorithm performance.

The four endmember spectral curves we selected are shown in Fig. 5a. When the pure pixel ratio is 0.1, 
according to our definition of pure pixel ratio, the number of pure pixels in the image is 6554, indicating that 
there are 6554 pixels containing only one type of terrain, and the other pixels are mixed pixels. We use different 
colors to distinguish different types of pixels, and the abundance scatterplot map is shown in Fig. 5b. In order to 
display the distribution positions of the four types of pure pixels and mixed pixels more clearly, we provided a 
36 * 36 subgraph in the upper left corner shown in Fig. 5c, and marked the pixel types represented by each color.

Figure 7.   Comparison between the estimated and true endmember spectral curve with different pure pixel 
ratio under SNR = 10 dB. (a) Carnallite, (b) Ammonioalunite, (c) Biotite, (d) Actinolite.
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To test the robustness of the algorithm, we added Gaussian white noise to the spatial measurement data and 
tested the accuracy of the algorithm in extracting endmembers under different signal-to-noise ratio (SNR). In the 
experiment, the SNR ranged from 10 to 50 dB with intervals of 10 dB. The regularization parameters are selected 
as �1 = 0.1 and �2 = 100 , the maximum iteration number is T = 20 , the convergence threshold is Th = 10−14 , 
and the spatial sampling rate is SRspa = 0.05.

At sampling rates of 0.1, 0.3, and 0.5, the variation of SAD with PPR and SNR is shown in Fig. 6. Seen from 
Fig. 6a, in this case the sampling rate is lower, when the SNR is as low as 10 dB, there is a significant error between 
the endmember spectrum extracted by the algorithm and the true spectrum, the maximum SAD is approxi-
mately 0.26. As the SNR increases to 30 dB, the error can be reduced to 7× 10−3 . When the signal-to-noise ratio 
increases to 50 dB, the error can be reduced to 4× 10−4 . At the same time, we can also observe that when the 
sampling rate is low, the error of endmember extraction changes slightly with the change of PPR.

When the sampling rate increases to 0.3, as the SNR increases, the accuracy of endmember extraction 
increases, as shown in Fig. 6b. At this time, as the pure pixel ratio increases, the accuracy of endmember extrac-
tion also continuously increases, and the maximum SAD is approximately below 0.17. When the sampling rate 
increases to 0.5, as shown in Fig. 6c, the maximum SAD is small and can be reduced to below 0.09. The results 
also indicate that as the sampling rate increases, the information contained in the measurement data will also 
increase, and the endmember extraction will be more accurate.

The comparison between the endmember spectrum extracted by SU_DCS and the true spectral curve from 
USGS is shown in Fig. 7, in these figures, the sampling rate during the unmixing is 0.1 and the SNR is 10 dB. 
The pure pixel ratio is 0.1, 0.4, 0.7 and 0.9. From the graph, it can be seen that there are differences between the 
extracted endmember spectrum and the true spectrum under different pure pixel ratios. Comparing the curves 
of the four endmembers, it is found that Carnalite and Biotite can be accurately extracted, and the trend of the 
extracted spectrum and the true spectral curves is basically consistent. For the endmember Ammonioalute, the 
higher the pure pixel ratio, the more consistent the trend with the true curve. When the pure pixel ratio is lower, 
the error will be larger such as PPR = 0.4. For endmember Actinolite, when the pure pixel ratio is as low as 0.1, 
the extracted spectral lines are inaccurate, resulting in significant errors. This is because when the ratio is too low, 

Figure 8.   Comparison between the estimated and true endmember spectral curve with different pure pixel 
ratio under SNR = 20 dB. (a) Carnallite, (b) Ammonioalunite, (c) Biotite, (d) Actinolite.
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there are fewer pure pixels in the hyperspectral dataset, resulting in inaccurate extraction of Actinolite spectral 
information. However, analyzing the extraction effects of the other three types of features, at a ratio of 0.1, the 
extracted spectral information is still quite consistent with the spectral information in the USGS library. When 
the pure pixel ratio increases, the errors will be smaller in most cases.

Figure 8 shows the comparison curve under the condition of SNR = 20 dB. For each endmember, the extracted 
spectral curve is already very close to the true spectral curve. Compared with Fig. 7, the error has decreased 
significantly, indicating that the SNR also has a significant impact on algorithm accuracy.

Utilizing VCA, PPI and NFINDR algorithm performs endmember extraction on simulated hyperspectral data 
which includes 4 endmembers. The PPI algorithm and NFINDR algorithm perform endmember extraction on 
raw hyperspectral data, while the VCA algorithm performs endmember extraction on measurement data with 
a sampling rate of 0.1. The comparison of the results of four extracted endmembers is shown in Fig. 9. From the 
graph, it can be seen that the endmember curves extracted by the three algorithms are relatively consistent with 
the real endmember curves, with only slight differences. This indicates that for simulated data, the proposed algo-
rithm can accurately extract endmember information. In the following experiments, we would use the proposed 
algorithm to conduct endmember extraction experiments on real hyperspectral data to verify its effectiveness.

Experimental results of simulated hyperspectral data
In this subsection, we conducted experiments using the SU_DCS algorithm on simulated hyperspectral data 
(the simulated data is from Sect. “Simulated hyperspectral data and evaluation indicators”) using the determined 
algorithm parameters. Analyze the experimental results and evaluate the performance of the proposed algorithm 
in endmember extraction, abundance estimation, and image remixing.

According to the above experiments, we can determine the parameters of SU_DCS. The regularization param-
eters are selected as �1 = 0.1 and �2 = 100 , the maximum iteration number is T = 20 , the convergence threshold 
is Th = 10−14 , and the spatial sampling rate is SRspa = 0.05 . The unmixing experiment is conducted on the 
synthetic hyperspectral data to complete the endmember extraction and abundance estimation.

At this point, we only have measured spatial and spectral data. In this case, it is necessary to find reliable 
endmember and abundance to complete the evaluation of algorithm performance. VCA can quickly extract 

Figure 9.   Endmember extraction comparison between VCA, PPI and NFINDR algorithms. (a) Carnallite, (b) 
Ammonioalunite, (c) Biotite, (d) Actinolite.
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endmember, with strong reliability and high accuracy. The abundance matrix estimated by the FCLS algorithm33 
is closer to the global optimal solution and has a fast iteration speed. Therefore, we use the VCA_FCLS algo-
rithm to extract endmembers and estimate abundance from the raw hyperspectral data, and use the results as a 
benchmark to evaluate our proposed algorithm.

Figure 10.   Comparison between the estimated and true endmember spectral curve with different algorithms. 
(a) Carnallite, (b) Ammonioalunite, (c) Biotite, (d) Actinolite.

Table 1.   The SAD, RMSE and PSNR comparison between SU_DCS and VCA_FCLS.

Endmember number Evaluation index

SU_DCS

VCA_FCLS

Sampling rate

0.1 0.2 0.3 0.4 0.5

P = 4

SAD (rad) 5.4e−4 5.1e−4 5.3e−4 5.3e−4 9.4e−4 2.5e−6

RMSE 1.4e−3 1.4e−3 1.7e−3 1.4e−3 1.2e−3 2.1e−6

PSNR (dB) 84.55 86.64 86.856 87.35 86.92 136.25

P = 5

SAD (rad) 6.7e−4 6.3e−4 8.2e−4 5.6e−4 7.2e−4 8.9e−7

RMSE 2.4e−3 1.1e−3 1.5e−3 1.1e−3 1.8e−3 1.2e−6

PSNR (dB) 82.97 84.64 84.49 84.77 84.17 142.18

P = 6

SAD (rad) 8.9e−4 7.e−4 1.7e−3 8.7e−4 7.3e−4 2.8e−6

RMSE 3.5e−3 1.7e−3 5.9e−3 3.4e−3 1.9e−3 2.3e−6

PSNR (dB) 79.80 81.58 82.42 82.76 82.38 133.98

P = 7

SAD (rad) 7.0e−4 1.1e−3 7.4e−4 6.6e−4 7.8e−4 4.4e−6

RMSE 2.9e−3 3.2e−3 2.9e−3 2.4e−3 2.9e−3 5.8e−6

PSNR (dB) 78.19 80.17 80.89 80.61 80.88 122.42
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The comparison between the endmember spectrum extracted by two algorithms and the true spectral curve 
of the USGS is shown in Fig. 10. At this time, the simulated hyperspectral data includes four spectral substances, 
namely, Carnallite, Ammonioalunite, Biotite and Actinolite. The sampling rate during the unmixing is 0.1. 
Whether VCA_FCLS algorithm or SU_DCS algorithm, the extracted endmember spectral curve is very consistent 
with the true spectral curve, which fully shows that even if there is only 10% of the measured data, the algorithm 
SU_DCS can still extract accurate endmember spectral information.

Table 1 lists the endmember extraction accuracy (SAD), abundance estimation accuracy (RMSE) and remix-
ing image accuracy (PSNR) obtained by different algorithms, when the endmember number is 4, 5, 6 and 7. 
Analyzing the experimental data in the table, the accuracy of algorithm VCA_FCLS performed on the full 
hyperspectral data is the highest, keeping the error on the order of 10−6 magnitude. The endmember extraction 
accuracy is on the order of 10−4 magnitude, the abundance estimation accuracy is on the order of 10−3 magni-
tude, and the PSNR for remixing image could be about 80 dB in our proposed algorithm SU_DCS. The result 
shows that adopting SU_DCS algorithm on simulated hyperspectral data could get high unmixing accuracy.

Figure 11.   Impact of dataset size on algorithm computational efficiency. (a) Endmember number is 4, (b) 
Endmember number is 5, (c) Endmember number is 6, (d) Endmember number is 7.

Table 2.   Basic situation of six datasets.

Dataset Original bands Original image size
Available bands (Remove the water absorption and 
noisy bands)

Cropped image size (spatially cropping for 
computation convenience)

Cuprite1 224 614*512 188 256*256

Cuprite2 224 614*512 188 256*256

Cuprite3 224 614*512 188 256*256

Indian Pines 220 145*145 200 128*128

Pavia University 115 610*340 103 256*256

Botswana 242 1476*256 145 256*256
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Given that hyperspectral datasets may be large and computationally intensive, let’s now consider the impact 
of dataset size on algorithm computational efficiency and scalability. Select 4, 5, 6, and 7 objects from the USGS 
spectral library, to construct simulated hyperspectral datasets, with image sizes of 64 * 64, 128 * 128, 256 * 256, 
512 * 512 and 1024 * 1024. The sampling rate is 0.1 ~ 0.5, with an interval of 0.1. Record the calculation time of 
the algorithm for different image sizes, as shown in Fig. 11.

From the results, it can be seen that for smaller datasets, the algorithm can quickly complete the task of 
unmixing, which requires less computer resources and has a lighter computational burden. As the size of the 
dataset increases, the computational complexity of the algorithm also increases, resulting in longer computation 
time. When the image size is 1024 * 1024, the calculation time can still be controlled within the square order 
of 10, indicating that the algorithm has the ability to handle large datasets. If high-performance computers can 
be utilized, data can be processed faster and algorithm efficiency can be improved. The results in the figure also 
indicate that the algorithm can handle datasets of different sizes, whether they are small or large. As the size 
of the dataset expands, algorithms can maintain stable performance and adapt to the growth of data volume.

In the simulated data unmixing results mentioned above, we utilize endmember extraction accuracy (SAD), 
abundance estimation accuracy (RMSE) and remixing image accuracy (PSNR) to evaluate the accuracy and fea-
sibility for the proposed algorithm. By comparing with other algorithms, we found that the proposed algorithm 
can accurately extract endmember information and abundance information from simulated data. Algorithms 
can handle datasets of different sizes while maintaining stable performance. We will use the proposed algorithm 
to perform unmixing processing on real hyperspectral data.

Experimental results and analysis of real hyperspectral data
In this section, we conducted some experiments on two kinds real hyperspectral data using the proposed algo-
rithm to evaluate its performance. Firstly, we provide the performance of the algorithm on real datasets without 
ground truth, in other words, we do not have the endmembers or abundance included in the datasets. Secondly, 
we provide the performance of the algorithm on real datasets with ground truth, namely, we have the true 
endmembers or abundance. In two situations, we analyze the accuracy of endmember extraction, abundance 
estimation, and remixing images, and compare the computational efficiency of the algorithms.

Experimental results of real hyperspectral data without groundtruth
In this subsection, we present the performance of the algorithm on six hyperspectral datasets, and compare it 
with other algorithms to evaluate their accuracy and efficiency.

Figure 12.   Pseudo color images of hyperspectral data created using Octave software68. (a) Cuprite1, (b) 
Cuprite2, (c) Cuprite3, (d) Indian Pines, (e) Pavia University, (f) Botswana.
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Real hyperspectral data and evaluation indicators
The source hyperspectral data cube is obtained from66,67, the basic situation of the six datasets is shown in Table 2, 
and the details for them can refer to Ref.63. Selecting three bands of hyperspectral images as RGB primary colors, 

Figure 13.   Endmember spectral curve comparison between three algorithms. (a) Endmember 1, (b) 
Endmember 2, (c) Endmember 3, (d) Endmember 4, (e) Endmember 5, (f) Endmember 6, (g) Endmember 7, 
(h) Endmember 8, (i) Endmember 9.
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the synthesized pseudo-color images are shown in Fig. 12. The satellite images obtained through calculation and 
processing were all created using Octave software68.

Three methods are used to perform unmixing experiments. (1) The VCA algorithm is used for endmember 
extraction from original hyperspectral data, the FCLS algorithm is used for abundance estimation, and the 
algorithm is denoted as VCA_FCLS. (2) The classic CPPCA53 algorithm is used to compress and reconstruct 
hyperspectral data, then utilize VCA and FCLS algorithm for unmixing, and the method is denoted as CPPCA_
VCA_FCLS. (3) Adopting the proposed algorithm SU_DCS, directly extracts the endmember and estimates the 
abundance from compressed sampling data.

Due to the lack of endmember information for real hyperspectral data, the VCA_FCLS results are used as 
the standard, to evaluate performance of other algorithms. The endmember accuracy is evaluated by SAD, and 
the abundance matrix is evaluated by RMSE. The extracted endmember matrix and abundance matrix are used 
to synthesize the remixing image, and the PSNR and SSIM are used to evaluate the algorithm efficiency, and the 
execution time is used to evaluate the algorithm efficiency.

Results and analysis of endmember extraction
The endmember spectral curves extracted by three algorithms are shown in Fig. 13. We give nine endmember 
results extracted from scene Cuprite3, and the sampling rate of CPPCA_VCA_FCLS and SU_DCS is 0.2. The 
trend of the endmember spectral curves extracted by different algorithms is generally consistent, which indi-
cates that these algorithms can effectively extract the endmember. From the perspective of the smoothness of 
the spectral curve, the spectral curve obtained by the CPPCA_VCA_FCLS has many burrs, and the trend of 
spectral curve at some wavebands has deviation. Proposed algorithm SU_DCS has a smoother spectral curve, 
which is more consistent with that of VCA_FCLS algorithm, indicating that SU_DCS algorithm extracts the 
endmember with high reliability.

Using the endmember curve extracted by VCA_ FCLS as the standard, calculate the SAD between endmember 
spectral curve extracted by different algorithms and the standard curve, and record these experimental results 
in Table 3. With the case of the SAD of SU_DCS less than CPPCA_VCA_FCLS, the result will be displayed in 
bold. It can be found from the data in the table that in most cases, the SAD of SU_DCS is at a low level, indicating 
that the algorithm can accurately extract the endmember information, which is consistent with the conclusion 
in Fig. 11.

Results and analysis of abundance estimation
The abundance matrix estimated by the three algorithms is shown in Fig. 14, which is consistent with the nine 
endmembers corresponding to Fig. 13. It can be seen that for most endmembers, the abundance matrices esti-
mated by different algorithms are consistent, and few abundance matrices have little biased. Using the results of 
VCA_FCLS as the standard, the RMSE results of the other two algorithms are recorded in Table 4. The smaller the 
RMSE, the smaller the mean square deviation between the estimated abundance matrix and the standard abun-
dance. It can be found from the data that in most cases, the RMSE of SU_DCS is at a low level, which indicates 
that the algorithm can accurately estimate abundance matrix, which is consistent with the conclusion in Fig. 13.

Table 3.   The SAD results for endmember extraction, using VCA_FCLS as the standard. Significant values are 
in bold.

SAD (rad)

Sampling rate

0.1 0.2 0.3 0.4 0.5

Cuptite1

 CPPCA_VCA_FCLS 0.287 0.058 0.048 0.051 0.056

 SU_DCS 0.048 0.038 0.025 0.024 0.023

Cuprite2

 CPPCA_VCA_FCLS 0.619 0.291 0.197 0.111 0.090

 SU_DCS 0.112 0.251 0.257 0.247 0.213

Cuprite3

 CPPCA_VCA_FCLS 0.343 0.084 0.053 0.041 0.036

 SU_DCS 0.035 0.049 0.040 0.036 0.037

Indian Pines

 CPPCA_VCA_FCLS 0.562 0.410 0.322 0.303 0.264

 SU_DCS 0.141 0.284 0.302 0.329 0.318

Pavia University

 CPPCA_VCA_FCLS 0.793 0.420 0.357 0.349 0.369

 SU_DCS 0.304 0.288 0.439 0.343 0.365

Botswana

 CPPCA_VCA_FCLS 0.831 0.352 0.263 0.283 0.299

 SU_DCS 0.329 0.201 0.260 0.215 0.183
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Accuracy comparison for remixing images
The extracted endmember and abundance matrix were used to synthesize the remixing image, and the accuracy 
of the remixing image was evaluated. The comparison of PSNR experimental data is shown in Fig. 15. Obviously, 

Figure 14.   Abundance matrix comparison between three algorithms created using Octave software68. (a) 
Endmember 1, (b) Endmember 2, (c) Endmember 3, (d) Endmember 4, (e) Endmember 5, (f) Endmember 6, 
(g) Endmember 7, (h) Endmember 8, (i) Endmember 9.
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the proposed algorithm SU_DCS has the highest PSNR, indicating that this unmixing framework has high accu-
racy. The comparison of SSIM experimental data for the structural similarity of the three algorithms is shown in 
Fig. 16. The structural similarity of the remixing images obtained by three algorithms are all close to 1, indicating 
that the structure of the remixing images obtained by three algorithms is very consistent with the original image.

The results of Indian Pines, Pavia University and Botswana comparing with algorithm, TFNet16 and SSR-
NET17 using PSNR, are listed in Table 5. The two algorithms obtained the reconstruction hyperspectral images 
using image fusion from hyperspectral and multispectral images. For the proposed SU_DCS, we list the result 
reconstructed from the measurement data, namely, the sampling rate is 0.1 ~ 0.5. For Indian Pines, the PSNR of 
SU_DCS algorithm can achieve the accuracy of TFNet at the sampling rate of 0.3, and achieve the accuracy of 

Figure 14.   (continued)
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SSR-NET algorithm at a sampling rate of 0.4. For Pavia University, the SU_DCS could achieve the accuracy of 
TFNet and SSR-NET algorithms at a lower sampling rate of 0.2, while for the Botswana dataset, the sampling 
rate could be further reduced to 0.1. This indicates that our algorithm is feasible in reconstructing raw data from 
measurement data and can ensure reconstruction accuracy.

The comparison between the original image and remixing images is shown in Fig. 17 (the band used by the 
pseudo color image is the same as that in Fig. 12), and the sampling rate is 0.2. The remixing image obtained by 
three unmixing algorithms is consistent with the original image. Surprisingly, we find that the remixing images 
obtained by SU_DCS has a higher degree of coincidence with the real image, which shows that the endmember 
and abundance extracted by the algorithm are reliable.

Algorithm efficiency comparison
The execution time of the three unmixing algorithms is recorded in Fig. 18. The results show that although the 
execution efficiency of three algorithms is on the same order of magnitude, the amount of data required is differ-
ent. Compared with VCA_FCLS algorithm, the SU_DCS only needs 10% of measurement data to meet the same 
accuracy. Compared with CPPCA_VCA_FCLS algorithm, although the efficiency of SU_DCS has only a slight 
advantage, the endmember accuracy, abundance accuracy and remixing image accuracy have great advantages. 
To sum up, the algorithm SU_ DCS has a significant advantage of unmixing accuracy and efficiency.

Experimental results of real hyperspectral data with groundtruth
In this subsection, we present the performance of the algorithm on two hyperspectral datasets with real end-
members or abundance. Compare the extracted endmembers and estimated abundance with the real ground 
truth, to verify the reliability of the proposed algorithm.

Figure 14.   (continued)

Table 4.   The RMSE results for abundance estimation, using VCA_FCLS as the standard.

RMSE

Sampling rate

0.1 0.2 0.3 0.4 0.5

Cuprite1

 CPPCA_VCA_FCLS 0.282 0.194 0.096 0.109 0.166

 SU_DCS 0.165 0.150 0.158 0.174 0.173

Cuprite2

 CPPCA_VCA_FCLS 0.184 0.168 0.149 0.117 0.180

 SU_DCS 0.206 0.131 0.133 0.138 0.137

Cuprite3

 CPPCA_VCA_FCLS 0.220 0.153 0.142 0.146 0.135

 SU_DCS 0.192 0.148 0.165 0.167 0.162

Indian Pines

 CPPCA_VCA_FCLS 0.207 0.154 0.150 0.185 0.141

 SU_DCS 0.222 0.248 0.211 0.209 0.203

Pavia University

 CPPCA_VCA_FCLS 0.164 0.111 0.069 0.136 0.091

 SU_DCS 0.265 0.216 0.153 0.155 0.144

Botswana

 CPPCA_VCA_FCLS 0.135 0.091 0.054 0.104 0.122

 SU_DCS 0.290 0.194 0.139 0.213 0.225
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Results and analysis for dataset cuprite
Cuprite dataset69 covers the Cuprite in Las Vegas, NV, U.S. There are 224 channels, ranging from 370 to 2480 nm. 
After removing the noisy channels (1–2 and 221–224) and water absorption channels (104–113 and 148–167), 
we remain 188 channels. A region of 250 × 190 pixels is considered in the experiment. Due to the USGS spectral 
library is recorded in 1995, while the Cuprite data was collected in 1997, variations between minerals occur dur-
ing this period, resulting in changes in spectral curves. The pseudo-color image and its mineral map are shown 
in Fig. 19. We combined the mineral map of Cuprite to determine the reference spectral map of this dataset. 

Figure 15.   PSNR comparison of remixing images. (a) Cuprite1, (b) Cuprite2, (c) Cuprite3, (d) Indian Pines, (e) 
Pavia University, (f) Botswana.
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We determine the number of endmembers is 12, which are summarized as follows "#1 Alunite", "#2 Andradite", 
"#3 Buddingtonite", "#4 Dumortierite", "#5 Kaolinite1", "#6 Kaolinite2", "#7 Muscovite", "#8 Montmorillonite", 
"#9 Nontronite", "#10 Pyrope", "#11 Sphene", "#12 Chalcedony". The reference spectral signatures of this dataset 
from USGS is shown in Fig. 20.

We use the proposed algorithm SU_DCS to perform unmixing processing on the dataset. Noted that it is not 
possible to directly match the set with the smallest SAD between the estimated value and the true value of the 
endmember. It is also necessary to visually interpret it in conjunction with the reference spectral curve shown in 

Figure 16.   SSIM comparison of remixing images. (a) Cuprite1, (b) Cuprite2, (c) Cuprite3, (d) Indian Pines, (e) 
Pavia University, (f) Botswana.
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Fig. 20. Considering that the USGS spectral curve is obtained under ideal conditions, while hyperspectral data 
may be affected by atmospheric interference and other environmental factors during collection. The endmem-
ber extracted by the proposed algorithm is estimated from randomly measured hyperspectral data, and there is 
inevitably a difference between the estimated value and the true value.

Figure 21 shows the endmember curve and abundance map estimated by the proposed algorithm under the 
condition of a sampling rate of 0.3. From the abundance estimation map, compared with the mineral distribu-
tion map shown in Fig. 19, the estimated 8 types of features can have good spatial consistency with the mineral 
distribution map. Although the estimated endmember curve has some deviation from the curve in the USGS 
library, it still has good consistency from the trend of the spectral curve.

Results and analysis for dataset Samson
In this Samson dataset69, there are 952 × 952 pixels. Each pixel is recorded at 156 channels covering the wave-
lengths from 401 to 889 nm. The spectral resolution is highly up to 3.13 nm. As the original image is too large, 
which is very expensive in terms of computational cost, a region of 95 × 95 pixels is used in the experiment. It 
starts from the (252,332)-th pixel in the original image. This data is not degraded by the blank channel or badly 
noised channels. Specifically, there are three targets in this image, i.e. "#1 Soil", "#2 Tree" and "#3 Water" respec-
tively. The pseudo-color image and its ground truth are shown in Fig. 22.

We conducted an unmixing experiment on the Samson dataset using the proposed SU_DCS algorithm, with 
a sampling rate of 0.1–0.5. Under different sampling conditions, we use SAD and RMSE to evaluate the accuracy 
of endmember extraction and abundance estimation, respectively. Table 6 quantifies the experimental results 
of the proposed algorithm and other four comparative algorithms on dataset Samson, including the sparse 
convolutional unmixing network (SUnCNN)49, the cycle-consistency unmixing network by learning cascaded 
autoencoders (CyCU-Net)50, the 3-DCNN unmixing frame considering SV (3DCNN-var)51, and the spatial-
spectral adaptive nonlinear unmixing network (SSANU-Net)52.

The difference between the other algorithms and the proposed algorithm is that, the proposed algorithm esti-
mate endmembers and abundance information from compressed data, while other algorithms perform unmixing 
on the raw hyperspectral data. From the perspective of endmember extraction, the proposed algorithm has an 
accuracy between the algorithm SUnCNN and the algorithm CyCU-net, and is superior to the 3DCNN-var 
algorithm. From the perspective of abundance estimation accuracy, the proposed algorithm is comparable to 
the algorithm SUnCNN and superior to the CyCU-net algorithm. Although the accuracy of the proposed algo-
rithm is inferior to that of the SSANU-Net algorithm, its advantage lies in the ability to recover endmember and 
abundance information from a lower amount of data, making it suitable for application scenarios that do not 
require high unmixing accuracy but require high transmission rates.

Figure 23 shows the comparison between the extracted endmember spectral curve and the true curve at a 
sampling rate of 0.3, and provides the corresponding abundance estimation graph. Observing the results in the 
graph, although the extracted endmember spectral curve has some deviations from the true spectral curves, 
in most bands, the two spectral curves have good consistency. The estimated abundance map may have some 
deviations compared to the true abundance map in Fig. 22, but it can accurately reflect the spatial distribution 
of each type of feature. These comparison results can demonstrate that the proposed algorithm can accurately 
perform spectral unmixing, and has good reliability.

Results and analysis for dataset Jasper
In this Jasper dataset69, there are 512 × 614 pixels. Each pixel is recorded at 224 channels ranging from 380 to 
2500 nm. The spectral resolution is up to 9.46 nm. Since this hyperspectral image is too complex to get the 
ground truth, we consider a subimage of 100 × 100 pixels. The first pixel starts from the (105,269)-th pixel in the 
original image. After removing the channels 1–3, 108–112, 154–166 and 220–224 (due to dense water vapor and 
atmospheric effects), we remain 198 channels. There are four endmembers latent in this data: "#1 Road", "#2 Soil", 
"#3 Water" and "#4 Tree". The pseudo-color image and its ground truth are shown in Fig. 24.

We conducted an unmixing experiment on the Jasper dataset using the proposed SU_DCS algorithm, with a 
sampling rate of 0.1–0.5. Under different sampling conditions, we use SAD and RMSE to evaluate the accuracy 
of endmember extraction and abundance estimation, respectively. Table 7 quantifies the experimental results 
of the proposed algorithm and other four comparative algorithms on dataset Jasper. From the perspective of 
endmember extraction, the accuracy of proposed algorithm is comparable to the algorithm 3DCNN-var and 
superior to the CyCU-net algorithm. From the perspective of abundance estimation, the five algorithms have 
the similar accuracy. This indicates that the proposed algorithm has highly competitive in terms of endmember 
extraction and abundance estimation.

Table 5.   The PSNR (dB) results for reconstruction images compared with other algorithms.

Dataset TFNet16 SSR-NET17

SU_DCS

SR = 0.1 SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5

Indian Pines 34.3559 35.2573 27.6608 32.0701 34.4975 35.7880 37.3854

Pavia University 40.8004 43.4938 31.0961 43.7922 46.2731 48.0702 49.2032

Botswana 37.2622 38.9583 39.7196 42.6353 43.6286 44.3729 45.0397
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Figure 25 shows the comparison between the extracted endmember spectral curve and the true curve at a 
sampling rate of 0.3, and provides the corresponding abundance estimation graph. The geographic environ-
ment of Jasper data is more complex than Samson data, and the spectral curves of the endmember Tree and 
endmember Soil are somewhat similar. Moreover, the tree and soil belong to a highly mixed state in space, which 
brings some difficulties to unmixing. Nevertheless, the abundance map estimated by the proposed algorithm 
still exhibits spatial similarity with the ground truth.

Figure 17.   Comparison between Remixing Image and Original Image created using Octave software68. (a) 
Cuprite1, (b) Cuprite2, (c) Cuprite3, (d) Indian Pines, (e) Pavia University, (f) Botswana.
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Results and analysis for dataset urban
In this Urban dataset69, there are 307 × 307 pixels, each of which corresponds to a 2 × 2 m2 area. In this image, 
there are 210 wavelengths ranging from 400 to 2500 nm, resulting in a spectral resolution of 10 nm. After the 
channels 1–4, 76, 87, 101–111, 136–153 and 198–210 are removed (due to dense water vapor and atmospheric 
effects), we remain 162 channels. There are four endmembers latent in this data: "#1 Asphalt", "#2 Grass", "#3 
Tree" and "#4 Roof ". The pseudo-color image and its ground truth are shown in Fig. 26.

Figure 18.   Comparison of algorithm efficiency. (a) Cuprite1, (b) Cuprite2, (c) Cuprite3, (d) Indian Pines, (e) 
Pavia University, (f) Botswana.
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We conducted an unmixing experiment on the Urban dataset using the proposed SU_DCS algorithm, with a 
sampling rate of 0.1 ~ 0.5. Under different sampling conditions, we use SAD and RMSE to evaluate the accuracy 
of endmember extraction and abundance estimation, respectively. Table 8 quantifies the experimental results of 
the proposed algorithm and other four comparative algorithms on dataset Urban. The proposed algorithm has 
the similar endmember extraction accuracy with algorithm SUnCNN, and has the similar abundance estimation 
accuracy with algorithm CyCU-net.

Compared to the Samson and Jasper datasets using indicators SAD and RMSE, the accuracy of the extracted 
endmembers and estimated abundance are slightly lower, especially with significant deviations in the endmember 

Figure 19.   The pseudo-color image of Cuprite and its mineral map. (a) Cuprite, (b) USGS mineral map of 
Cuprite mining district.

Figure 20.   The USGS library mineral spectral signatures.
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Asphalt. The reasons for this bad result might lie in the following two aspects. On the one hand, the Urban dataset 
has a more complex geographical environment than the Samson and Jasper datasets, the spectral characteristics 
of different endmembers can be quite similar, which increases the difficulty of spectral unmixing. On the other 
hand, the proposed algorithm extracts endmembers and estimates abundance information from compressed data. 
The compression process leads to partial loss of data information, further increasing the difficulty of unmixing 
and affecting the accuracy of unmixing.

Figure 27 shows the comparison between the extracted endmember spectral curve and the true curve at a 
sampling rate of 0.3, and provides the corresponding abundance estimation graph. Comparing the abundance 
map in Fig. 27 and the ground truth map in Fig. 26, it can be seen that the spatial distribution of endmember 
Grass, endmember Tree, and endmember Roof is still consistent with the ground truth, indicating that the pro-
posed algorithm can still effectively obtain endmember and abundance information from compressed measured 
data.

Figure 21.   Comparison between endmembers extracted by the SU_DCS algorithm and the spectral curve 
from USGS library, and the corresponding estimated abundance map for each endmember created using Octave 
software68. (a) #1 Alunite, (b) #3 Buddingtonite, (c) #5 Kaolinite1, (d) #6 Kaolinite2, (e) #7 Muscovite, (f) #9 
Nontronite, (g) #11 Sphene, and (h) #12 Chalcedony.
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We will continue to study how to achieve high-precision unmixing from such complex environments.

Algorithm performance analysis and discussions
Analyzing the above experimental results, we discuss the performance of the proposed algorithm on different 
types of datasets.

The Cuprite dataset belongs to mineralogy data, which has extremely diverse lithological and chemical com-
position and structural characteristics, forming complex surface images. Due to the influence of environmental 
factors on the chemical composition, crystal structure, or physical state of minerals, the spectral characteris-
tics measured using a spectrometer may be inaccurate. From the experimental results, it can be seen that the 
estimated spectrum is consistent with the basic trend of the measured spectrum curve, but there may be some 
numerical errors. Moreover, chemical reactions or molecular drift may occur between minerals, leading to some 
deviation between the estimated abundance and the ground truth.

The Samson dataset uses a single image with relatively simple components, which only includes three types 
of land cover: soil, trees, and water. The spectral curves of these three types of land cover have significant differ-
ences. From the experimental results, it can be seen that the estimated spectral curve and land distribution are 
consistent with the ground truth.

The sub image blocks used in the Jasper dataset contain four types of land cover, namely # 1 Road, # 2 Soil, 
# 3 Water, and # 4 Tree. The spectral curves of the four types of land cover differ greatly. From the experimental 
results, the estimated spectral curves and land cover distribution are consistent with the ground truth.

The Urban dataset contains four types of features, including Asphalt, Grass, Tree, and Roof. The spectral 
curves of grasslands and trees are similar, and the Asphalt undergoes an aging process during use, which leads 
to changes in its chemical composition and physical properties, thereby affecting its spectral characteristics. This 
increases the difficulty of endmember extraction and abundance estimation. From the experimental results, it 
can be seen that the extraction of the spectral curve of Asphalt is not accurate enough, and there is a significant 

Figure 22.   The pseudo-color image of Samson and its ground truth created using Octave software68. (a) 
Samson, (b) GT: Endmembers, (c) GT: #1 Soil, (d) GT: #2 Tree, (e) GT: #3 Water.

Table 6.   The comparison of SAD and RMSE results for dataset Samon.

Algorithm

SU_DCS

SUnCNN49 CyCU-net50 3DCNN-var51 SSANU-Net52SR = 0.1 SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5

SAD (rad) 0.0467 0.0477 0.0476 0.0477 0.0480 0.0594 0.0329 0.0985 0.0127

RMSE 0.2275 0.2166 0.2140 0.2049 0.2132 0.2118 0.2874 0.1750 0.1668
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difference between the abundance map and the actual distribution of land cover. The other three types of features, 
including grass, trees, and roofs, follow the same trend as the ground truth.

Overall, the proposed algorithm can extract endmembers that maintain good consistency with the given true 
endmember spectral curves. The estimated abundance map can also maintain good spatial consistency with the 

Figure 23.   The comparison between extracted endmember spectral curve and the truth spectral curve 
(left column), the corresponding estimated abundance (right column) created using Octave software68. 
(a) Endmember: #1 Soil, (b) Abundance: #1 Soil, (c) Endmember: #2 Tree, (d) Abundance: #2 Tree, (e) 
Endmember: #3 Water, (f) Abundance: #3 Water.
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spatial distribution of real objects. The comparison results with other algorithms also indicate that the proposed 
algorithm can obtain relatively accurate endmembers and abundance information from compressed data, the 
reliability and validity of the proposed algorithm have been proved.

Conclusions
Based on the measured data in the compressed sampling domain and the characteristics of the endmember and 
abundance matrix, a spectral unmixing algorithm based on double-compressed sampling (SU_DCS) is proposed. 
The hyperspectral image is spatially coherent sampled and inter spectral compressed sampled, and the joint 
optimization model of endmember and abundance is constructed. The endmember extraction and abundance 
estimation are optimized using ADMM algorithm to realize spectral unmixing. Using USGS spectral library 
and Dirichlet distribution to construct simulated hyperspectral dataset, the parameter selection of SU_DCS 
algorithm is determined.

We utilize SU_DCS algorithm for conducting unmixing experiments on two kinds of real hyperspectral 
datasets, and evaluates the endmember extraction and abundance estimation using SAD and RMSE. The first 
kind dataset is without ground truth, and the experimental results are compared with VCA_FCLS to evaluate 
the performance of the algorithm in extracting endmember information and estimating abundance. Use PSNR 
and SSIM to evaluate the accuracy of re-mixing images, the remixing images obtained by SU_DCS are very 
consistent with the original image, which further illustrates the algorithm SU_DCS has high unmixing accu-
racy. Moreover, by comparing the execution time, it is found that SU_DCS has high unmixing efficiency. Due 
to the second kind dataset with ground truth, including dataset Cuprite, dataset Samson, dataset Jasper and 
dataset Urban, we provided the comparison between the extracted endmember and the ground truth. From the 
comparison results, it can be seen that the proposed algorithm can accurately extract endmember information 
from compressed data and estimate abundance map, thus proving the effectiveness of SU_DCS. Comparing the 
proposed algorithm with other algorithms, including SUnCNN, CyCU-Net, 3DCNN-var and SSANU-Net, it 
was found that the proposed algorithm can obtain relatively accurate endmember and abundance information 
from compressed data, fully demonstrating the reliability and effectiveness of the algorithm. We will continue 
to study the application of the unmixing results in hyperspectral image classification in the future.

Figure 24.   The pseudo-color image of Jasper and its ground truth created using Octave software68. (a) Jasper, 
(b) GT: Endmembers, (c) GT: #1 Tree, (d) GT: #2 Water, (e) GT: #3 Soil, (f) GT: #4 Road.

Table 7.   The comparison of SAD and RMSE results for dataset Jasper.

Algorithm

SU_DCS

SUnCNN49 CyCU-net50 3DCNN-var51 SSANU-Net52SR = 0.1 SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5

SAD (rad) 0.0920 0.0923 0.0924 0.0923 0.0924 0.0694 0.1043 0.0912 0.0404

RMSE 0.1569 0.1938 0.1597 0.1755 0.1753 0.1794 0.1958 0.1997 0.1570
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Figure 25.   The comparison between extracted endmember spectral curve and the truth spectral curve 
(left column), the corresponding estimated abundance (right column) created using Octave software68. (a) 
Endmember: #1 Tree, (b) Abundance: #1 Tree, (c) Endmember: #2 Water, (d) Abundance: #2 Water, (e) 
Endmember: #3 Soil, (f) Abundance: #3 Soil, (g) Endmember: #4 Road, (h) Abundance: #4 Road.
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Figure 26.   The pseudo-color image of Urban and its ground truth created using Octave software68. (a) Jasper, 
(b) GT: Endmembers, (c) GT: #1 Asphalt, (d) GT: #2 Grass, (e) GT: #3 Tree, (f) GT: #4 Roof.

Table 8.   The comparison of SAD and RMSE results for dataset Urban.

Algorithm

SU_DCS

SUnCNN49 CyCU-net50 3DCNN-var51 SSANU-Net52SR = 0.1 SR = 0.2 SR = 0.3 SR = 0.4 SR = 0.5

SAD (rad) 0.1422 0.1411 0.1411 0.1411 0.1412 0.1605 0.2343 0.0851 0.0679

RMSE 0.3133 0.2871 0.2931 0.2971 0.3003 0.2488 0.3365 0.2413 0.2282
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Figure 27.   The comparison between extracted endmember spectral curve and the truth spectral curve 
(left column), the corresponding estimated abundance (right column) created using Octave software68. (a) 
Endmember: #1 Asphalt, (b) Abundance: #1 Asphalt, (c) Endmember: #2 Grass, (d) Abundance: #2 Grass, (e) 
Endmember: #3 Tree, (f) Abundance: #3 Tree, (g) Endmember: #4 Roof, (h) Abundance: #4 Roof.
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