Table 4 Comparison of the gene selection algorithms using particular datasets with fivefold validation.

From: A gene selection algorithm for microarray cancer classification using an improved particle swarm optimization

  

IBPSO

IG_GA

EPSO

mABC

BPSO-GCS-ELM

SIW-APSO-ELM

Leukemia

Accuracy-Avg

98.34 ± 0.02

97.56 ± 0.32

95.11 ± 0.12

99.3 ± 0.01

100 ± 0.00

100 ± 0.00

Brain Cancer

Accuracy-Avg

77.34 ± 0.35

77.23 ± 0.45

74.65 ± 0.32

79.34 ± 0.03

88.3 ± 0.02

90.21 ± 0.04

Colon

Accuracy-Avg

93.45 ± 0.02

94.31 ± 

93.23 ± 0.06

97.34 ± 0.09

97.38 ± 0.01

98.45 ± 0.01

SRBCT

Accuracy-Avg

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

Lung

Accuracy-Avg

95.86 ± 0.89

95.57 ± 0.23

95.67 ± 0.96

96.65 ± 0.56

94.78 ± 0.02

97.62 ± 0.01

Lymphoma

Accuracy-Avg

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

11_Tumors

Accuracy-Avg

95.06 ± 0.04

92.53 ± 0.07

95.92 ± 0.54

97.78 ± 0.23

97.88 ± 0.02

99.87 ± 0.10

DLBCL

Accuracy-Avg

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

100 ± 0.00

  1. Bold values in Table 4 indicate the best results. (IBPSO = Improved Binary Particle Swarm Optimization, IG-GA = Information Gain Genetic Algorithm, EPSO = Enhance Binary Particle Swarm. Optimization, mABC = Artificial Bee Colony Algorithm, BPSO-GCS-ELM = Binary Particle Swarm Optimization-Gene to Class Sensitivity-Extreme Learning Machine, SIW-APSO-ELM = Self Inertia Weight Adaptive Particle Swarm Optimization-Extreme Learning Machine).