Table 1 Hybrid nanofuid’s correlations57.

From: Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles

Properties

Formula for hybrid nanofluid

Density Ratio (\(\frac{\rho _{hnf}}{\rho _f}\))

\(\frac{\rho _{hnf}}{\rho _f} = \frac{1}{\rho _f}\big [(1-\phi _2)\left[ (1-\phi _2)+ \rho _1 \phi _1\right] +\rho _2\phi _2\big ]\)

Heat Capacity Ratio [\(\frac{(\rho {C_{p}})_{hnf}}{(\rho {C_{p}})_f}\)]

\(\frac{(\rho {C_{p}})_{hnf}}{(\rho {C_{p}})_f} = (1-\phi _2)\left[ (\rho {C_{p}})_f(1-\phi _1)+\phi _1 \frac{(\rho {C_{p}})_1}{(\rho {C_{p}})_f}\right] +\frac{{\rho _2}{\phi _2}}{\rho _1}\)

Viscosity Ratio (\(\frac{\mu _{hnf}}{\mu _{f}}\))

\(\frac{\mu _{hnf}}{\mu _{f}} = \frac{1}{(1-\phi _1-\phi _2)^{2.5}}\)

Thermal Conductivity Ratio (\(\frac{k_{hnf}}{k_{f}}\))

\(\frac{k_{hnf}}{k_{f}} = \frac{\left( \frac{k_{1}\phi _{1}+k_{2}\phi _{2}}{\phi _{1}+\phi _{2}}\right) + 2k_{f} + 2(k_{1}\phi _{1}+k_{2}\phi _{2}) - 2k_{f}(\phi _{1}+\phi _{2})}{\left( \frac{k_{1}\phi _{1}+k_{2}\phi _{2}}{\phi _{1}+\phi _{2}}\right) + 2k_{f} - (k_{1}\phi _{1}+k_{2}\phi _{2}) + (\phi _{1}+\phi _{2})k_{f}}\)