Table 2 HVDC parameters for training datasets.

From: Bayesian-optimized LSTM-DWT approach for reliable fault detection in MMC-based HVDC systems

Variable

Values

Location (km) for internal faults

1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 110, 120, 130, 140, 150, 160, 170, 180, 190, 198, Total number of fault location values: L = 20

Fault-resistance (Ω) for internal faults

0.01, 0.1, 0.2, 0.5, 1, 5, 15, 25, 55, 75, 100, 125, 175, 200, 250, 275, 300, 325, 350, 375, 400. Total number of fault resistance values: R = 21

External-fault types (AC faults)

Each character set except G (stands for ground) represent phase

AC faults occurred at AC wind farm 1 (Converter 1)

Three-Phase to Ground (ABCG) with fault resistance range (0.01, 0.1, 1, 5, 10, 15, 25, 50, 75,100, 125, 175), Two-Phase to Ground (ABG, ACG, BCG), Single-Phase to Ground (AG, BG, CG), Phase to Phase (AB, AC, BC) with fault resistances: 0.1, 5,10, 15, 20, 25, 30. Total AC faults = 12 + 21 + 21 + 21 = 75

External-fault types (DC bus faults)

Fault resistances: 0.01, 0.1, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,…, 375, 380, 385, 390, 395, 400,…, 595,600, 605, 610. Total DC bus faults are 125

Noise-(dB)

20, 25, 30,45

Healthy State (100) + External fault types (125 + 75) = 100 + 200 = 300

Total Internal faults (Fint) = (kI × 3) = 420 × 3 = 1260

kI = L × R = 20 × 21 = 420/each Fint fault type, 3 Fint faults types (i.e. N-PTG = 420, P-PTG = 420, PTP = 420), Training samples = [(Fint = kI × 3) + 300] = N = 1560, Training samples = 1560 for training only