Table 1 The dimension of each layer in ResNet18-attention.
From: Defect monitoring method for Al-CFRTP UFSW based on BWO–VMD–HHT and ResNet
Layer name | Input size | Output size | ResNet 18-layer |
---|---|---|---|
Input | 6 × 1024 | 6 × 1024 | Fully connected layer \(\left[6\times 1024\right]\times 1\) |
Conv1 | 6 × 1024 | 6 × 1024 × 64 | \(\left[1\times 3, 64\right]\times 1\) |
Attention model (SE) | 6 × 1024 × 64 | 6 × 1024 × 64 | SE model Encoder |
Conv2 | 6 × 1024 × 64 | 6 × 512 × 64 | \(\left[\begin{array}{c}1\times 3, 64\\ 1\times 3, 64\end{array}\right]\times 2\) |
Maximum pool | 6 × 512 × 64 | 6 × 256 × 64 | Kernel size: \(\left[1\times \text{2,64}\right]\times 1\) Strides:\(\left[1\times \text{2,64}\right]\) |
Conv3 | 6 × 256 × 64 | 6 × 256 × 128 | \(\left[\begin{array}{c}1\times 3, 128\\ 1\times 3, 128\end{array}\right]\times 2\) |
Maximum pool | 6 × 256 × 128 | 6 × 128 × 128 | Kernel size: \(\left[1\times \text{2,64}\right]\times 1\) Strides:\(\left[1\times \text{2,64}\right]\) |
Conv4 | 6 × 128 × 128 | 6 × 128 × 256 | \(\left[\begin{array}{c}1\times 3, 256\\ 1\times 3, 256\end{array}\right]\times 2\) |
Maximum pool | 6 × 128 × 256 | 6 × 64 × 256 | Kernel size: \(\left[1\times \text{2,64}\right]\times 1\) Strides:\(\left[1\times \text{2,64}\right]\) |
Conv5 | 6 × 64 × 256 | 6 × 64 × 512 | \(\left[\begin{array}{c}1\times 3, 512\\ 1\times 3, 512\end{array}\right]\times 2\) |
Upsample layer | 6 × 64 × 512 | 6 × 64 × 1024 | 2x |
Attention model (SE) | 6 × 64 × 1024 | 6 × 1024 × 64 | SE model Decoder |
SoftMax | 6 × 1024 × 64 | 7 × 1 | Average pool, 7-class, SoftMax |