Table 4 Prediction results of BWO–VMD–HHT datasets.

From: Defect monitoring method for Al-CFRTP UFSW based on BWO–VMD–HHT and ResNet

Classification method

Precision ↑

Recall ↑

F1-Score ↑

GFLOPs↓

ResNet18-Attention (with − 10 dB noise dataset)

0.611

0.614

0.612

1.84

Multi-SVM

0.703

0.704

0.703

0.52

Hartl33 (CNN)

0.792

1.20

RBF

0.803

0.804

0.802

BP-Net

0.812

0.813

0.812

0.21

Li26 (Res-GCM)

0.840

3.24

Rabe34 (BiLSTM)

0.865

2.02

ResNet18

0.886

0.878

0.876

1.82

ResNet18-attention (with − 2 dB noise dataset)

0.891

0.884

0.877

1.84

ResNet18-attention (this paper)

0.914

0.915

0.914

1.84