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Multi‑class segmentation 
of temporomandibular joint using 
ensemble deep learning
Kyubaek Yoon 1, Jae‑Young Kim 2, Sun‑Jong Kim 3, Jong‑Ki Huh 2, Jin‑Woo Kim 3* & 
Jongeun Choi 4*

Temporomandibular joint disorders are prevalent causes of orofacial discomfort. Diagnosis 
predominantly relies on assessing the configuration and positions of temporomandibular joint 
components in magnetic resonance images. The complex anatomy of the temporomandibular 
joint, coupled with the variability in magnetic resonance image quality, often hinders an accurate 
diagnosis. To surmount this challenge, we developed deep learning models tailored to the automatic 
segmentation of temporomandibular joint components, including the temporal bone, disc, and 
condyle. These models underwent rigorous training and validation utilizing a dataset of 3693 magnetic 
resonance images from 542 patients. Upon evaluation, our ensemble model, which combines five 
individual models, yielded average Dice similarity coefficients of 0.867, 0.733, 0.904, and 0.952 
for the temporal bone, disc, condyle, and background class during internal testing. In the external 
validation, the average Dice similarity coefficients values for the temporal bone, disc, condyle, and 
background were 0.720, 0.604, 0.800, and 0.869, respectively. When applied in a clinical setting, these 
artificial intelligence-augmented tools enhanced the diagnostic accuracy of physicians, especially 
when discerning between temporomandibular joint anterior disc displacement and osteoarthritis. In 
essence, automated temporomandibular joint segmentation by our deep learning approach, stands as 
a promising aid in refining temporomandibular joint disorders diagnosis and treatment strategies.

Keywords  Artificial intelligence, Deep learning, Segmentation, Temporomandibular joint, Magnetic 
resonance imaging

Temporomandibular joint disorders (TMDs) constitute a diverse range of pathologies affecting the temporo-
mandibular joint (TMJ) and its affiliated anatomical structures1–3. These conditions present with various clinical 
manifestations, encompassing cephalic pain, facial asymmetry, tinnitus, and other related symptoms4–7. TMDs 
have garnered attention healthcare industry because of their prevalence, ranking as the second most frequently 
observed musculoskeletal affliction. Between 5 and 12% of the U.S. population is affected by one or more of 
these disorders, resulting in an annual economic burden of approximately $4 billion4,8. Furthermore, a signifi-
cant 20–25% of the U.S. demographic reports TMJ-associated symptoms, underscoring the critical public health 
implications, with an alarming rate of almost one million new cases emerging annually9–11.

Magnetic resonance imaging (MRI) is a fundamental noninvasive diagnostic tool for evaluating various 
TMDs, including internal disc derangements and osteoarthritic changes12–18. For accurate diagnosis, the precise 
delineation of the TMJ components on MR images is essential, with TMJ segmentation focusing on the spatial 
attributes and morphology of the components, which include the temporal bone, disc, and condyle19. However, 
manual delineation presents challenges because of ambiguities in disc visualization and the poor contrast in 
magnetic resonance (MR) images19. Clinicians should meticulously examine not only disc displacements, joint 
effusions, chronic inflammation, and abnormalities in the mandibular condyle, but also the microarchitectural 
integrity of soft tissues, including the disc, temporal bone, and mandibular condyle, during the diagnostic 
process20,21. They rely heavily on their expertise in this process. However, the aforementioned limitations of 
MRI, combined with the dynamic nature of TMJ MRI, can make it difficult to determine the boundaries of 
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each anatomical component, particularly the disc, condyle, and temporal bone. Additionally, the morphology 
of TMJ components can change based on disease progression, further complicating the segmentation process 
and increasing the risk of errors22,23.

Recently, the dentistry field has seen a rise in artificial intelligence adoption15,24–26. However, TMJ component 
segmentation in MR images remains challenging due to issues with contrast and visibility. Few studies have 
addressed TMJ segmentation comprehensively. Some excluded the disc23, others relied on manual methods27, 
and many automated approaches focused only on the disc, neglecting the condyle and temporal bone28,29. Addi-
tionally, several studies used limited regions of interest (ROI) or binary segmentation techniques, which do not 
meet the diverse diagnostic needs of TMDs28.

This study investigated a method for the automated segmentation of the three primary TMJ components, 
namely the temporal bone, disc, and condyle, and validated its efficacy using ensemble deep learning meth-
odologies specifically tailored to multi-class segmentation (Fig. 1). Additionally, our method incorporates not 
only convolutional neural networks, which use convolution operations commonly employed in previous TMJ 
segmentation studies, but also Vision Transformer models, which excel at capturing global context and enhancing 
feature representation. By combining these models in an ensemble learning framework, our approach signifi-
cantly improves the accuracy and robustness of TMJ segmentation. This innovative method provides clinicians 
with a powerful diagnostic tool that facilitates rapid and precise TMD diagnoses, streamlining clinical decision-
making processes and optimizing therapeutic interventions across a spectrum of TMD presentations (Fig. 2).

Results
This study delineated the outcomes of segmenting the TMJ using six salient deep learning architectures, includ-
ing five baseline models and one ensemble model. During training, with epochs capped at 50, a customary 
behavior was observed across the five baseline models: the validation loss initially decreased and then increased 
after reaching the epoch with the minimum loss. The epoch corresponding to this lowest validation loss varied 
depending on the model. To prevent overfitting and ensure optimal performance, we selected the model weights 
at the point of minimum validation loss for each model. This approach allowed us to use the most effective model 
state, avoiding the effects of overfitting observed in later epochs (Table 1).

In the internal validation, the DSC values for the temporal bone, disc, condyle, and background varied, with 
ranges of 0.847–0.868, 0.694–0.733, 0.882–0.910, and 0.947–0.952, respectively (Table 2a).

In the external validation, the DSC values for the temporal bone, disc, condyle, and background fluctuated 
within ranges of 0.692–0.733, 0.561–0.607, 0.771–0.800, and 0.858–0.870, respectively (Table 2b).

Both the temporal bone and mandibular condyle consistently demonstrated high DSC value, emphasizing 
the reliability of the model’s performance for these components. By contrast, the disc component consistently 
had lower DSC values. This trend of disparities among the components persisted even in the external validation, 
underlining the consistent nature of the model’s behavior across different datasets.

Figure 3 visually illustrates the outcomes of segmenting the TMJ components. The demarcated regions for 
the temporal bone and condyle were predominantly accurate, with minimal aberrations observed peripherally. 
The segmentation of the disc component appeared to be slightly indistinct; however, its spatial placement was 
accurately discerned, demonstrating that this model could play a significant role in diagnosing disc displace-
ment. Concurrently, the background delineation was notably accurate. Additionally, Fig. 4 depicts a representa-
tive TMJ disc displacement, indicating the relative positioning of the joint’s components, while Fig. 5 exhibits a 
TMJ osteoarthritis example, underlining the condylar morphology but with a slightly subdued edge definition 
in comparison to the reference.

Figure 1.   Sagittal view of the temporomandibular joint in a magnetic resonance (MR) image highlighting the 
region of interest alongside its segmentation mask as the ground truth, with red, green, and yellow showing the 
temporal bone, disc, and condyle, respectively.
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Utilizing MRI slices alone, Doctor A diagnosed TMJ anterior disc displacement (ADD) and osteoarthritis 
with 53.33% accuracy. After introducing the AI-generated masks, the accuracy increased to 73.33% for TMJ 
ADD and 60% for osteoarthritis. Similarly, Doctor B’s accuracy improved from 50 to 80% for TMJ ADD and 
from 50 to 66.67% for osteoarthritis. Doctor C’s accuracy increased from 76.67 to 90% for TMJ ADD, with a 
minor improvement for osteoarthritis from 60 to 66.67%. When using the AI-predicted masks with the MRI, 
the precision levels for the diagnosis revisions were as follows: Doctor A at 85.71%, Doctor B at 93.75%, and 
Doctor C at 77.78%.

Figure 2.   Deep learning pipeline for magnetic resonance (MR) image preprocessing and segmentation. 
The figure presents a two-part workflow for medical image analysis. On the left, the ’Image preprocessing’ 
segment outlines the initial treatment of a MR image. It begins with manual annotation on a region of 
interest (ROI), followed by three key steps: cropping to focus on the ROI, applying Contrast Limited Adaptive 
Histogram Equalization (CLAHE) for contrast enhancement, and performing data augmentation to enhance 
the robustness and variability of the image data. The right-hand section, labeled ’Deep learning pipeline,’ 
displays the processed MRI image being input into a suite of deep learning models for further analysis. These 
models include DeepLabV3Plus, OCRNet with ResNet101, UPerNet with ResNet101, UPerNet combined 
with the Swin Transformer, and SegFormer. Each contributes to the analysis, and their outputs are integrated 
using an ensemble method. This integration leads to the creation of a ’Prediction mask,’ which visualizes the 
segmentation outcome, providing a detailed delineation of the ROI against the background image.

Table 1.   Data characteristics.

Characteristics

Dataset-E Dataset-Y

Development set Intramural test set Extramural test set

Number of patients 383 96 63

Number of joints (%) 702 (100) 160 (100) 126 (100)

TMJ anterior disc displacement

Normal (%) 289 (41.2) 56 (35) 46 (36.5)

ADcR (%) 239 (34.0) 54 (33.8) 36 (28.6)

ADsR (%) 174 (24.8) 50 (31.2) 44 (34.9)

TMJ osteoarthritis
Normal (%) 488 (69.5) 102 (63.8) 78 (61.9)

Abnormal (%) 214 (30.5) 58 (36.2) 48 (38.1)

Number of images 2660 532 501

Age: mean (s.d.) 32 (13) 33 (13) 36 (14)

Sex: % male 41 40 25
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Discussion
Our study introduced a novel approach to the segmentation of TMJ components in MR images using multi-class 
deep learning, which showed significant advancements over previous methodologies. Our model demonstrated 
strong performance with DSC values of 0.855, 0.711, 0.894, and 0.949 for the respective components. This 
improved performance can be attributed to the innovative use of ensemble learning and Vision Transformers. 
The ensemble learning approach combines the strengths of multiple models, enhancing robustness and accuracy. 
Specifically, it leverages the complementary capabilities of convolutional neural networks (CNNs) and Vision 
Transformers (ViTs). CNNs are highly effective in capturing local features due to their convolutional operations, 
which is crucial for detailed structure segmentation in MR images. On the other hand, ViTs, with their attention 
mechanisms, excel at capturing global context and enhancing feature representation, which is particularly ben-
eficial for accurately distinguishing between closely located anatomical structures within the TMJ. By integrating 
these models, the ensemble learning approach ensures a more comprehensive analysis of the image data, leading 
to higher segmentation accuracy. The combination of local detail capture by CNNs and global context under-
standing by ViTs allows our model to effectively handle the inherent challenges of TMJ component segmenta-
tion, such as contrast variability and visibility issues. In summary, the success of our model in achieving high 
DSC values for TMJ component segmentation is largely due to the synergistic effects of ensemble learning and 
the advanced capabilities of Vision Transformers in enhancing feature representation and model performance.

Our research achieved significant advancements in the domain of MR imaging analysis, especially in the 
context of the TMJ. The study contributions can be categorized into two primary domains. First, the inherent 
challenges of MR imaging often arise from the weak signal intensity of certain anatomical structures, notably 
the TMJ disc. To address this issue, we implemented a contrast enhancement algorithm. This approach not only 
accentuated the visibility of the TMJ disc but also sharpened the demarcation of the associated TMJ structures, 
including the temporal bone and condyle. An integral aspect of this methodology was the meticulous calibration 
of the hyperparameters that governed the algorithm’s performance. The optimal values for these hyperparam-
eters were identified using a comprehensive grid search technique. Note that any imprecision in this calibration 
process could amplify noise levels within the MR image, underlining the importance of rigorous parameter 

Table 2.   Model performances in internal validation. The 95% confidence intervals are provided in 
parentheses, with the Dice similarity coefficient (DSC), sensitivity, and specificity.

Model

Temporal bone Disc Condyle Background

DSC Sensitivity Specificity DSC Sensitivity Specificity DSC Sensitivity Specificity DSC Sensitivity Specificity

The internal test

DeepLabV-
3plus

0.852 
(0.837–
0.867)

0.892 
(0.873–
0.909)

0.920 
(0.903–
0.931)

0.716 
(0.709–
0.724)

0.753 
(0.739–
0.769)

0.956 
(0.934–
0.972)

0.894 
(0.878–
0.909)

0.922 (0.902 
-0.939)

0.940 
(0.928–
0.951)

0.949 
(0.947–
0.951)

0.898 
(0.877–
0.910)

0.866 
(0.854–
0.877)

UPerNet-
Swin

0.852 
(0.836–
0.866)

0.897 
(0.881–
0.917)

0.919 
(0.900–
0.930)

0.710 
(0.702–
0.718)

0.750 
(0.737–
0.768)

0.952 
(0.932–
0.971)

0.890 
(0.873–
0.905)

0.924 
(0.905–
0.940)

0.935 
(0.922–
0.950)

0.947 
(0.945–
0.949)

0.899 
(0.877–
0.909)

0.867 
(0.853–
0.875)

UPerNet-
resnet101

0.847 
(0.831–
0.862)

0.882 
(0.868–
0.900)

0.903 
(0.890–
0.918)

0.723 
(0.716–
0.731)

0.760 
(0.744–
0.779)

0.953 
(0.933–
0.971)

0.882 
(0.864–
0.898)

0.914 
(0.897–
0.931)

0.939 
(0.926–
0.949)

0.949 
(0.947–
0.951)

0.897 
(0.875–
0.910)

0.867 
(0.854–
0.877)

OCRNet
0.850 
(0.835–
0.866)

0.886 
(0.870–
0.899)

0.902 
(0.887–
0.918)

0.716 
(0.708–
0.724)

0.755 
(0.739–
0.770)

0.956 
(0.933–
0.971)

0.888 
(0.873–
0.905)

0.915 
(0.899–
0.934)

0.939 
(0.928–
0.950)

0.949 
(0.947–
0.951)

0.897 
(0.877–
0.911)

0.868 
(0.856–
0.878)

SegFormer
0.868 
(0.855–
0.881)

0.912 
(0.900–
0.924)

0.925 
(0.909–
0.939)

0.694 
(0.685–
0.704)

0.749 
(0.738–
0.761)

0.953 
(0.930–
0.972)

0.910 
(0.895–
0.922)

0.938 
(0.919–
0.957)

0.940 
(0.930–
0.952)

0.949 
(0.947–
0.951)

0.899 
(0.878–
0.911)

0.866 
(0.855–
0.876)

Ensemble 
method

0.867 
(0.853–
0.881)

0.910 
(0.899–
0.922)

0.925 
(0.912–
0.937)

0.733 
(0.726–
0.740)

0.773 
(0.761–
0.788)

0.961 
(0.946–
0.977)

0.904 
(0.889–
0.918)

0.929 
(0.913–
0.944)

0.943 
(0.931–
0.954)

0.952 
(0.950–
0.954)

0.898 
(0.877–
0.910)

0.865 
(0.856–
0.875)

The external test

DeepLabV-
3plus

0.696 
(0.683–
0.722)

0.732 
(0.720–
0.745)

0.822 
(0.808–
0.837)

0.607 
(0.594–
0.620)

0.634 
(0.622–
0.647)

0.838 
(0.820–
0.854)

0.781 
(0.766–
0.801)

0.801 
(0.784–
0.820)

0.831 
(0.819–
0.845)

0.858 
(0.840–
0.873)

0.813 (0.799 
-0.828)

0.807 
(0.789–
0.824)

UPerNet-
Swin

0.723 
(0.708–
0.734)

0.763 (0.750 
-0.772)

0.847 
(0.830–
0.861)

0.567 
(0.558–
0.580)

0.613 
(0.601–
0.624)

0.830 
(0.818–
0.845)

0.799 
(0.787–
0.811)

0.811 
(0.792–
0.828)

0.842 
(0.825–
0.856)

0.870 
(0.858–
0.880)

0.822 
(0.805–
0.840)

0.804 
(0.785–
0.823)

UPerNet-
resnet101

0.693 
(0.682–
0.718)

0.734 
(0.721–
0.745)

0.824 
(0.809–
0.836)

0.587 
(0.577–
0.599)

0.628 
(0.614–
0.640)

0.835 
(0.819–
0.848)

0.771 
(0.750–
0.789)

0.796 
(0.784–
0.809)

0.830 
(0.818–
0.845)

0.862 
(0.845–
0.876)

0.820 
(0.802–
0.836)

0.802 
(0.780–
0.823)

OCRNet
0.692 
(0.677–
0.720)

0.734 
(0.723–
0.746)

0.826 
(0.810–
0.838)

0.606 
(0.583–
0.625)

0.635 
(0.620–
0.648)

0.835 
(0.818–
0.849)

0.776 
(0.759–
0.791)

0.795 
(0.780–
0.808)

0.830 
(0.815–
0.843)

0.865 
(0.850–
0.881)

0.819 
(0.803–
0.835)

0.803 
(0.781–
0.824)

SegFormer
0.733 
(0.720–
0.749)

0.771 
(0.758–
0.782)

0.834 
(0.821–
0.845)

0.561 
(0.542–
0.583)

0.610 
(0.600–
0.622)

0.832 
(0.815–
0.847)

0.789 
(0.763–
0.810)

0.810 
(0.790–
0.826)

0.844 
(0.830–
0.857)

0.866 
(0.848–
0.882)

0.820 
(0.803–
0.838)

0.804 
(0.783–
0.826)

Ensemble 
method

0.720 
(0.702–
0.735)

0.766 
(0.755–
0.780)

0.842 
(0.829–
0.855)

0.604 
(0.589–
0.621)

0.630 
(0.617–
0.644)

0.837 
(0.821–
0.854)

0.800 
(0.788–
0.814)

0.811 
(0.791–
0.827)

0.845 
(0.828–
0.860)

0.869 
(0.857–
0.880)

0.822 
(0.806–
0.839)

0.802 
(0.783–
0.825)
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tuning. Second, a well-acknowledged challenge in medical imaging is the requirement for substantial datasets 
to facilitate efficient deep learning. To address the challenges associated with amassing extensive medical data, 
our research leveraged transfer learning. By drawing upon insights from pretrained models on expansive data-
sets, we achieved commendable efficiency, even with the relatively limited data pertaining to TMJ MR imaging. 
Moreover, we incorporated data augmentation techniques to enhance our model’s resilience to data limitations. 
By integrating transformations including random rotations and shifts into our original dataset, we fortified the 
model’s robustness and generalizability. Notably, our empirical observations revealed that the amalgamation of 
transfer learning and data augmentation led to a performance increase of 5–10% compared to models without 
these enhancements.

The results underscore the potential of AI-integrated diagnostic approaches in the realm of TMDs. Upon 
analyzing physician comparative outcomes, a consistent improvement in diagnostic rates was evident upon the 
inclusion of the AI-predicted mask, which suggests that the AI-assisted approach was reliable in refining clinical 
decision-making processes.

For a condition such as TMJ ADD, the increase in the diagnostic rate when using the AI-predicted mask 
was noteworthy. All the participating physicians demonstrated increased diagnostic accuracies, indicating the 
potential of the AI model to assist in diverse clinical scenarios. A similar positive trajectory was evident in 
osteoarthritis diagnosis, emphasizing the broad applicability of our segmentation models.

When considering corrections made after mask integration, the high precision rates indicated that the AI’s 
impact was not confined to increasing the number of diagnoses but also included improvements in accuracy. 
This is critical in a clinical setting where diagnostic precision directly influences patient care and outcomes.

From an anatomical perspective, the introduced segmentation models offer a refined method for assessing 
TMJ components through MRI. By facilitating automated and meticulous insights, clinicians can gain a deeper 
understanding of the intricate relationships between the TMJ components. Consequently, the proposed model 
would be an invaluable supplementary tool, enhancing the diagnostic process for TMDs and ensuring a higher 
standard of patient care.

Our research had certain limitations. The discrepancy between the DSC measures for the internal and exter-
nal validations could be seen as a manifestation of overfitting. When a model is overfit to internal data, it may 
capture noise or very specific patterns that do not generalize well to external datasets. To overcome this issue, the 
model’s generalization capabilities must be enhanced. Obtaining diverse data from a variety of patients, ensur-
ing a broad spectrum of cases and scenarios, would be effective. By training the model on such augmented and 
varied datasets, it could learn more general features rather than over-relying on specific patterns from a limited 
dataset. Consequently, the model’s performance will improve in the external validation, making it more robust 
and applicable across different patient cohorts.

Prior research on TMJ segmentation relied on a bounding box method to determine the ROI by marking 
corner coordinates that encompassed the entire region. In practical clinical scenarios, an automated system is 

Figure 3.   Automatic segmentation results for different temporomandibular joints, where the red, green, and 
yellow regions show the temporal bone, disc, and condyle, respectively.
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needed that can seamlessly extract an ROI that captures all the vital TMJ components from a comprehensive 
MR image. Therefore, a promising direction for future studies would be the development of a TMJ ROI detec-
tion model and its integration with our TMJ segmentation model, to establish an end-to-end automated system 
for clinical application.

This study presented an innovative AI-driven methodology for the autonomous segmentation of the three 
integral components of the TMJ. Employing this systematic segmentation, clinicians could considerably stream-
line the diagnostic process for various TMJ disorders. Furthermore, our AI-anchored TMJ segmentation model 
delivers consistent and precise predictions, which, when combined with conventional clinical assessments, could 
bolster the fidelity of the eventual diagnoses. In essence, the convergence of AI and digital dentistry offers promis-
ing avenues for enhanced diagnostic precision and efficacy in addressing dental and TMJ disorders.

Materials and methods
Study participants
The institutional review boards of Ewha Womans University Mokdong Hospital (EUMC 2020-03-012-003) 
and Yonsei University Gangnam Severance Hospital (3-2020-0025) approved this study, and we affirm that all 
experiments were performed in accordance with relevant guidelines and regulations. Ewha Womans University 
Mokdong Hospital Institutional Review Board and Yonsei University Gangnam Severance Hospital Institutional 
Review Board absolved the need for informed consent given the negligible risks posed to the study participants. 
Rigorous measures were instituted to safeguard the confidentiality of the patient information throughout the 
investigation. Patients exhibiting MRI artifacts and those with divergent annotations from disparate clinicians 
were methodically excluded from the study.

Two distinct datasets were employed for the research’s analytical objectives: Dataset-E and Dataset-Y (Table 1). 
Dataset-E was judiciously utilized for the development and internal testing of the deep learning algorithms, 
while Dataset-Y was used for the external validation. Dataset-E encapsulated data from 479 participants (age 
spectrum: 15–68 years; average age ± standard deviation: 32 ± 13 years; male constituency: 41%) accrued from 
Ewha Womans University Mokdong Hospital (Hospital-E), South Korea, spanning the period from April 2005 to 
April 2020. Dataset-Y encompassed data from 63 participants (age spectrum: 19–77 years; average age ± standard 

Figure 4.   A sample of temporomandibular joint anterior disc displacement. The upper panels show the closed-
mouth position, and the lower panels show the open-mouth position. The red, green, and yellow regions show 
the temporal bone, disc, and condyle, respectively.
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deviation: 33 ± 13 years; male constituency: 40%) gathered from Yonsei University Gangnam Severance Hospital 
(Hospital-Y), South Korea, within the identical time frame.

Magnetic resonance imaging (MRI) protocol
For Dataset-E, MRI slices were performed with a Siemens Avanto 1.5 Tesla Magnetom apparatus furnished with 
dual 3-inch surface coils. The sequences recorded and used for training, validation, and testing were T1-weighted 
images. The specified acquisition parameters included a repetition time (TR) of 400.00 ms, an echo time (TE) 
of 15.00 ms, a field of view (FOV) spanning 160 × 160 mm2, an acquisition matrix of 256 × 256 pixels, and a slice 
thickness of 3 mm. Subsequent to the acquisition, the MR slices were digitized to resolutions of either 2048 × 2048 
or 1024 × 1024 pixels and archived using the Standard JPEG 1992 format.

For Dataset-Y, MR images were procured using a 3.0-T Magnetom scanner (Achieva; Philips Medical Sys-
tems, Best, The Netherlands) complemented by 3-inch surface coils. The sequences recorded and used for train-
ing, validation, and testing were T1-weighted images. The delineated acquisition parameters included a TR of 
450.00 ms, a TE of 15.00 ms, an FOV measuring 120 × 120 mm2, an acquisition matrix of 240 × 240 pixels, and 
a slice thickness of 3 mm. After their acquisition, the MR slices were digitized to a resolution of 512 × 512 pixels 
and archived using the Standard JPEG 1992 format.

Each participant’s MRI volumetric data comprised a total of 40 slices, divided into 20 with an open-mouth 
configuration and 20 with a closed-mouth configuration. A meticulous criterion was devised to ascertain the 
quintessential loci within the MRI volume to optimally visualize the TMJ component. Consequently, a subset 
of eight MR slices pertinent to these loci was extracted. This extraction comprised two MR slices each for the 
right joint in the closed-mouth posture, left joint in the closed-mouth posture, right joint in the open-mouth 
posture, and left joint in the open-mouth posture. Slices manifesting suboptimal visibility of the TMJ compo-
nent or those in which segmentation masks were infeasible because of image clarity concerns were categorically 
excluded. Moreover, MR slices exhibiting conspicuous artifacts were judiciously excised to maintain the integrity 
and quality of the dataset.

Datasets
The comprehensive datasets consisted of paired entities: an MR image juxtaposed with its corresponding seg-
mentation mask, serving as the ground truth. For Dataset-E, the TMJ components were meticulously delineated 
within a circumscribed ROI by three clinicians (Group 1: 16, 8, and 7 years of experience) in oral and maxillofa-
cial surgery and were reviewed by a single expert (JW Kim). For Dataset-Y, six clinicians (Group 2: 14, 13, 10, 9,7, 
and 6 years of experience) in oral and maxillofacial surgery participated in the delineation, and a single expert (JY 

Figure 5.   Samples of temporomandibular joint osteoarthritis. The red, green, and yellow regions show the 
temporal bone, disc, and condyle, respectively.
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Kim) reviewed the dataset. The ROI was characterized as the minimal spatial expanse adequately encompassing 
the temporal bone, disc, and condyle, which are represented in red, green, and yellow in the figures, respectively.

Dataset-E was partitioned into a development set and an intramural test set. The development set was meticu-
lously split into training subset for model training and validation subset used for the periodic assessment of model 
performance, culminating in the selection of the optimal model. To ensure a balanced distribution, patients from 
Dataset-E were randomly assigned at the patient-level to the training subset, validation subset, and intramural 
test set at a 7:1:2 ratio. For specificity, the development set of Dataset-E included 383 patients, equivalent to 702 
joints, for a total of 2,660 images. The intramural test set comprised 96 patients, which translated to 160 joints 
and 532 images. By contrast, Dataset-Y was distinctively configured as an extramural test set, with data from 63 
patients, for a total of 126 joints and 501 images.

Model development and test
Figure 2 represents the whole process. Beginning with an MR image, a specific "region of interest (ROI)" is 
manually annotated. This ROI undergoes sequential preprocessing, including cropping to isolate the region, 
contrast enhancement using CLAHE, and data augmentation. The processed image is then fed into five deep 
learning models, including DeepLabV3plus paired with resnet10130, OCRNet31, UPerNet paired with resnet10132, 
UPerNet integrated with the Swin transformer33, and SegFormer34. The outputs of these models are combined 
using an ensemble method, culminating in a final "prediction mask" that showcases the segmentation results.

Image preprocessing
We utilized a computer-assisted approach to extract the ROI from sagittal MR images with an automated crop-
ping algorithm, which enhanced the efficiency.

Owing to the low contrast of MR images, the contrast-limited adaptive histogram equalization (CLAHE) 
technique35 was implemented for the training subset utilizing the Albumentations Python library36. The opti-
mized hyperparameters for CLAHE included a clip limit of 4 and grid size of 8.

We incorporated image augmentation to diversify the training dataset and prevent overfitting. We used 
random rotations within a range of −15

◦

to+ 15
◦ and shifts of up to 10% for both the x and y dimensions. This 

augmentation was repeated five times.
Lastly, all the ROI MR images and corresponding masks were standardized to 640× 640 pixels. These methods 

collectively supported a robust deep learning model for medical imaging.

Development and test
This research was dedicated to devising and scrutinizing deep learning models tailored to the precise segmen-
tation of the TMJ components within MRI slices. Convolutional neural networks (CNNs) have been the cor-
nerstone for image analysis. However, transformers, which are equipped with self-attention mechanisms, have 
challenged this norm because of their performance in specific contexts.

Five architectures were rigorously evaluated: three grounded in CNN—DeepLabV3plus paired with resnet101, 
OCRNet, and UPerNet paired with resnet101. Simultaneously, two leveraged the nuances of transformers: UPer-
Net integrated with the Swin transformer, and SegFormer. The UPerNet with Swin transformer combines the 
hierarchical feature extraction capabilities of UPerNet with the powerful global attention mechanism of the 
Swin transformer, allowing for improved spatial understanding and segmentation accuracy. SegFormer, on the 
other hand, utilizes a transformer encoder-decoder architecture to provide efficient and effective segmentation 
by capturing both local and global features, ensuring precise delineation of TMJ components. The segmentation 
challenge was framed as a pixel classification task, where each pixel was either earmarked for a specific TMJ 
component or categorized as background.

During training, models underwent iterative evaluation across epochs. At each epoch’s culmination, the 
model’s efficacy on the training subset was gauged against the validation subset, which guided the fine-tuning 
of the hyperparameters. These were configured at a learning rate of 0.01, momentum of 0.9, weight decay of 
0.005, batch size of 4, and span of 50 epochs. PyTorch37 facilitated model development and was powered by four 
NVIDIA TESLA V100 GPUs.

The cross-entropy loss function was employed to quantify the alignment between the model predictions 
and ground truth. This function, which is traditionally preferred for multi-category classification, was used to 
determine the discrepancies. Stochastic gradient descent was selected to train the model by minimizing this loss.

By recognizing the constraints of our dataset size, transfer learning was harnessed. This entailed the initiali-
zation of our models with weights from architectures pretrained on the PASCAL VOC 2012 dataset, followed 
by fine-tuning on our TMJ dataset. This strategy, which is especially potent when grappling with limited data, 
ensured a robust foundation for our models.

Lastly, ensemble techniques were integrated to assess the compounded strength of our five trained models. 
Ensemble methodologies strengthen model robustness and accuracy by harmonizing predictions across dif-
ferent architectures38. In our approach, we utilized a majority voting system for individual model outputs. This 
method ensures that the ensemble’s prediction is based on the consensus of the majority of models, enhancing 
accuracy and reducing the likelihood of errors from any single model. By combining the strengths of both 
CNN-based models and transformer-based models, the ensemble method capitalizes on their complementary 
capabilities. The majority voting system ensures that the final prediction benefits from the detailed local feature 
extraction of CNNs and the global context understanding of transformers, resulting in more robust and precise 
TMJ component segmentation.
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Evaluation and statistical analysis
To assess the effectiveness of our models in predicting image segmentation masks, we employed a test dataset 
and evaluated the similarity between the predicted and ground truth masks using the Dice similarity coefficient 
(DSC), sensitivity, and specificity. The DSC was calculated using the following equation:

where TP represents the number of true positive pixels, FP represents the number of false positive pixels, 
and FN represents the number of false negative pixels. The DSC values ranged from 0 to 1, where a higher value 
indicated a better segmentation performance.

Sensitivity, also known as the true positive rate, measures the proportion of actual positives that are correctly 
identified by the model. We calculated sensitivity using the following equation:

where TP represents the number of true positive pixels, and FN represents the number of false negative pixels. 
Sensitivity values range from 0 to 1, with higher values indicating better performance in correctly identifying 
pixels belonging to the object of interest.

Specificity, also known as the true negative rate, measures the proportion of actual negatives that are correctly 
identified by the model. We calculated specificity using the following equation:

where TN represents the number of true negative pixels, and FP represents the number of false positive pixels. 
Specificity values range from 0 to 1, with higher values indicating better performance in correctly identifying 
pixels not belonging to the object of interest.

To evaluate the statistical robustness of the model’s outcomes, a nonparametric bootstrap methodology was 
employed to derive the 95% confidence intervals. This entailed a stochastic selection of N instances from the 
test dataset through a replacement mechanism, iterated 1000 times. Subsequently, from the accrued distribution 
of these 1000 bootstrap samples, the 95% confidence intervals for the DSC, sensitivity, and specificity perfor-
mance indicators were ascertained by discerning the range demarcated by the 2.5th and 97.5th percentiles. This 
methodological framework provided a comprehensive estimation of the inherent variability associated with the 
model’s performance.

Physician comparative analysis: diagnoses with and without AI‑predicted masks
TMJ diagnostic procedure
For evaluating the clinical utility of AI-predicted masks in both the TMJ ADD and TMJ osteoarthritis diagnoses, 
we involved a separate group of 3 external experts (Group 3), who had not participated in the annotation process 
of either dataset. Group 3 consisted of three experienced clinicians from the department of oral and maxillofacial 
surgery, with 21, 19, and 17 years of experience respectively. They assessed a set of 30 joints randomly selected 
from Dataset-Y, the external test dataset. This was done to ensure a rigorous and unbiased evaluation of the 
AI-predicted masks.

The MRIs for the initial diagnostic round were the same MRIs used in the following diagnostic round with 
the AI masks. This was to maintain consistency and ensure that any observed improvement in diagnostic per-
formance was due to the integration of AI-predicted masks.

Calculation procedure
The increase in the diagnostic rate was calculated by determining the difference between the numbers of diag-
noses made with and without the AI-predicted mask and then dividing it by the total number of joints.

To gauge the precision of the correct diagnoses made using the AI-predicted masks, we determined the per-
centage of cases where the diagnosis was altered after mask inclusion and turned out to be correct.

Ethical approval
This study was approved by the institutional review boards of two hospitals, Ewha Womans University Mokdong 
Hospital (EUMC 2020-03-012-003) and Yonsei University Gangnam Severance Hospital (3-2020-0025).

Data availability
This study was approved by the Institutional Review Board of Ewha Womans University Mokdong Hospital and 
Yonsei University Gangnam Severance Hospital. The data generated and analyzed during this study are protected 
because of patient privacy concerns. Some data may be available from the corresponding author upon reasonable 
request, subject to certain restrictions.
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