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Multi-class segmentation
of temporomandibular joint using
ensemble deep learning
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Temporomandibular joint disorders are prevalent causes of orofacial discomfort. Diagnosis
predominantly relies on assessing the configuration and positions of temporomandibular joint
components in magnetic resonance images. The complex anatomy of the temporomandibular

joint, coupled with the variability in magnetic resonance image quality, often hinders an accurate
diagnosis. To surmount this challenge, we developed deep learning models tailored to the automatic
segmentation of temporomandibular joint components, including the temporal bone, disc, and
condyle. These models underwent rigorous training and validation utilizing a dataset of 3693 magnetic
resonance images from 542 patients. Upon evaluation, our ensemble model, which combines five
individual models, yielded average Dice similarity coefficients of 0.867, 0.733, 0.904, and 0.952

for the temporal bone, disc, condyle, and background class during internal testing. In the external
validation, the average Dice similarity coefficients values for the temporal bone, disc, condyle, and
background were 0.720, 0.604, 0.800, and 0.869, respectively. When applied in a clinical setting, these
artificial intelligence-augmented tools enhanced the diagnostic accuracy of physicians, especially
when discerning between temporomandibular joint anterior disc displacement and osteoarthritis. In
essence, automated temporomandibular joint segmentation by our deep learning approach, stands as
a promising aid in refining temporomandibular joint disorders diagnosis and treatment strategies.

Keywords Artificial intelligence, Deep learning, Segmentation, Temporomandibular joint, Magnetic
resonance imaging

Temporomandibular joint disorders (TMDs) constitute a diverse range of pathologies affecting the temporo-
mandibular joint (TM]) and its affiliated anatomical structures'=. These conditions present with various clinical
manifestations, encompassing cephalic pain, facial asymmetry, tinnitus, and other related symptoms*”’. TMDs
have garnered attention healthcare industry because of their prevalence, ranking as the second most frequently
observed musculoskeletal affliction. Between 5 and 12% of the U.S. population is affected by one or more of
these disorders, resulting in an annual economic burden of approximately $4 billion*®. Furthermore, a signifi-
cant 20-25% of the U.S. demographic reports TM]J-associated symptoms, underscoring the critical public health
implications, with an alarming rate of almost one million new cases emerging annually®-!1.

Magnetic resonance imaging (MRI) is a fundamental noninvasive diagnostic tool for evaluating various
TMDs, including internal disc derangements and osteoarthritic changes'?"*®. For accurate diagnosis, the precise
delineation of the TM]J components on MR images is essential, with TM] segmentation focusing on the spatial
attributes and morphology of the components, which include the temporal bone, disc, and condyle'®. However,
manual delineation presents challenges because of ambiguities in disc visualization and the poor contrast in
magnetic resonance (MR) images". Clinicians should meticulously examine not only disc displacements, joint
effusions, chronic inflammation, and abnormalities in the mandibular condyle, but also the microarchitectural
integrity of soft tissues, including the disc, temporal bone, and mandibular condyle, during the diagnostic
process**?!. They rely heavily on their expertise in this process. However, the aforementioned limitations of
MRI, combined with the dynamic nature of TMJ MRI, can make it difficult to determine the boundaries of
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each anatomical component, particularly the disc, condyle, and temporal bone. Additionally, the morphology
of TMJ components can change based on disease progression, further complicating the segmentation process
and increasing the risk of errors*>?.

Recently, the dentistry field has seen a rise in artificial intelligence adoption!***-2%. However, TM] component
segmentation in MR images remains challenging due to issues with contrast and visibility. Few studies have
addressed TM] segmentation comprehensively. Some excluded the disc?, others relied on manual methods?,
and many automated approaches focused only on the disc, neglecting the condyle and temporal bone?®?. Addi-
tionally, several studies used limited regions of interest (ROI) or binary segmentation techniques, which do not
meet the diverse diagnostic needs of TMDs?.

This study investigated a method for the automated segmentation of the three primary TMJ components,
namely the temporal bone, disc, and condyle, and validated its efficacy using ensemble deep learning meth-
odologies specifically tailored to multi-class segmentation (Fig. 1). Additionally, our method incorporates not
only convolutional neural networks, which use convolution operations commonly employed in previous TM]
segmentation studies, but also Vision Transformer models, which excel at capturing global context and enhancing
feature representation. By combining these models in an ensemble learning framework, our approach signifi-
cantly improves the accuracy and robustness of TMJ segmentation. This innovative method provides clinicians
with a powerful diagnostic tool that facilitates rapid and precise TMD diagnoses, streamlining clinical decision-
making processes and optimizing therapeutic interventions across a spectrum of TMD presentations (Fig. 2).

Results

This study delineated the outcomes of segmenting the TM] using six salient deep learning architectures, includ-
ing five baseline models and one ensemble model. During training, with epochs capped at 50, a customary
behavior was observed across the five baseline models: the validation loss initially decreased and then increased
after reaching the epoch with the minimum loss. The epoch corresponding to this lowest validation loss varied
depending on the model. To prevent overfitting and ensure optimal performance, we selected the model weights
at the point of minimum validation loss for each model. This approach allowed us to use the most effective model
state, avoiding the effects of overfitting observed in later epochs (Table 1).

In the internal validation, the DSC values for the temporal bone, disc, condyle, and background varied, with
ranges of 0.847-0.868, 0.694-0.733, 0.882-0.910, and 0.947-0.952, respectively (Table 2a).

In the external validation, the DSC values for the temporal bone, disc, condyle, and background fluctuated
within ranges of 0.692-0.733, 0.561-0.607, 0.771-0.800, and 0.858-0.870, respectively (Table 2b).

Both the temporal bone and mandibular condyle consistently demonstrated high DSC value, emphasizing
the reliability of the model’s performance for these components. By contrast, the disc component consistently
had lower DSC values. This trend of disparities among the components persisted even in the external validation,
underlining the consistent nature of the model’s behavior across different datasets.

Figure 3 visually illustrates the outcomes of segmenting the TMJ components. The demarcated regions for
the temporal bone and condyle were predominantly accurate, with minimal aberrations observed peripherally.
The segmentation of the disc component appeared to be slightly indistinct; however, its spatial placement was
accurately discerned, demonstrating that this model could play a significant role in diagnosing disc displace-
ment. Concurrently, the background delineation was notably accurate. Additionally, Fig. 4 depicts a representa-
tive TMJ disc displacement, indicating the relative positioning of the joint’s components, while Fig. 5 exhibits a
TM] osteoarthritis example, underlining the condylar morphology but with a slightly subdued edge definition
in comparison to the reference.

Ground truth mask

Figure 1. Sagittal view of the temporomandibular joint in a magnetic resonance (MR) image highlighting the
region of interest alongside its segmentation mask as the ground truth, with red, green, and yellow showing the
temporal bone, disc, and condyle, respectively.
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Figure 2. Deep learning pipeline for magnetic resonance (MR) image preprocessing and segmentation.

The figure presents a two-part workflow for medical image analysis. On the left, the Image preprocessing’
segment outlines the initial treatment of a MR image. It begins with manual annotation on a region of
interest (ROI), followed by three key steps: cropping to focus on the ROI, applying Contrast Limited Adaptive
Histogram Equalization (CLAHE) for contrast enhancement, and performing data augmentation to enhance
the robustness and variability of the image data. The right-hand section, labeled "Deep learning pipeline;
displays the processed MRI image being input into a suite of deep learning models for further analysis. These
models include DeepLabV3Plus, OCRNet with ResNet101, UPerNet with ResNet101, UPerNet combined
with the Swin Transformer, and SegFormer. Each contributes to the analysis, and their outputs are integrated
using an ensemble method. This integration leads to the creation of a "Prediction mask, which visualizes the
segmentation outcome, providing a detailed delineation of the ROI against the background image.

Dataset-E Dataset-Y

Characteristics Development set | Intramural test set | Extramural test set
Number of patients 383 96 63
Number of joints (%) 702 (100) 160 (100) 126 (100)

Normal (%) 289 (41.2) 56 (35) 46 (36.5)
TM]J anterior disc displacement ADCR (%) 239 (34.0) 54 (33.8) 36 (28.6)

ADsR (%) 174 (24.8) 50 (31.2) 44 (34.9)

Normal (%) 488 (69.5) 102 (63.8) 78 (61.9)
TM]J osteoarthritis

Abnormal (%) | 214 (30.5) 58 (36.2) 48 (38.1)
Number of images 2660 532 501
Age: mean (s.d.) 32(13) 33(13) 36 (14)
Sex: % male 41 40 25

Table 1. Data characteristics.

Utilizing MRI slices alone, Doctor A diagnosed TM] anterior disc displacement (ADD) and osteoarthritis
with 53.33% accuracy. After introducing the Al-generated masks, the accuracy increased to 73.33% for TMJ
ADD and 60% for osteoarthritis. Similarly, Doctor B’s accuracy improved from 50 to 80% for TMJ ADD and
from 50 to 66.67% for osteoarthritis. Doctor C’s accuracy increased from 76.67 to 90% for TM] ADD, with a
minor improvement for osteoarthritis from 60 to 66.67%. When using the Al-predicted masks with the MRI,
the precision levels for the diagnosis revisions were as follows: Doctor A at 85.71%, Doctor B at 93.75%, and

Doctor C at 77.78%.
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Temporal bone Disc Condyle Background
Model DSC Sensitivity | Specificity | DSC Sensitivity | Specificity | DSC Sensitivity | Specificity | DSC ‘ Sensitivity | Specificity
The internal test

0.852 0.892 0.920 0.716 0.753 0.956 0.894 0.940 0.949 0.898 0.866
?elelzLabV' (0.837- (0.873- (0.903- (0.709- (0.739- (0.934- (0.878- %992329()0'902 (0.928- (0.947- (0.877- (0.854-

P 0.867) 0.909) 0.931) 0.724) 0.769) 0.972) 0.909) : 0.951) 0.951) 0.910) 0.877)
UPerNet. | 0852 0.897 0.919 0.710 0.750 0.952 0.890 0.924 0.935 0.947 0.899 0.867
Swin (0.836- (0.881- (0.900- (0.702- (0.737- (0.932- (0.873- (0.905- (0.922- (0.945- (0.877- (0.853-

Wi 0.866) 0.917) 0.930) 0.718) 0.768) 0.971) 0.905) 0.940) 0.950) 0.949) 0.909) 0.875)
UPerNet. | 0847 0.882 0.903 0.723 0.760 0.953 0.882 0.914 0.939 0.949 0.897 0.867
resnetio] | (0-831- (0.868- (0.890- (0.716- (0.744- (0.933- (0.864- (0.897- (0.926- (0.947- (0.875- (0.854-

0.862) 0.900) 0.918) 0.731) 0.779) 0.971) 0.898) 0.931) 0.949) 0.951) 0.910) 0.877)
0.850 0.886 0.902 0.716 0.755 0.956 0.888 0.915 0.939 0.949 0.897 0.868
OCRNet | (0.835- (0.870- (0.887- (0.708- (0.739- (0.933- (0.873- (0.899- (0.928- (0.947- (0.877- (0.856-
0.866) 0.899) 0.918) 0.724) 0.770) 0.971) 0.905) 0.934) 0.950) 0.951) 0.911) 0.878)
0.868 0912 0.925 0.694 0.749 0.953 0.910 0.938 0.940 0.949 0.899 0.866
SegFormer | (0.855- (0.900- (0.909- (0.685- (0.738- (0.930- (0.895- (0.919- (0.930- (0.947- (0.878- (0.855-
0.881) 0.924) 0.939) 0.704) 0.761) 0.972) 0.922) 0.957) 0.952) 0.951) 0.911) 0.876)
Ensemble | 0867 0.910 0.925 0.733 0.773 0.961 0.904 0.929 0.943 0.952 0.898 0.865
method (0.853- (0.899- (0.912- (0.726- (0.761- (0.946- (0.889- (0.913- (0.931- (0.950- (0.877- (0.856-
0.881) 0.922) 0.937) 0.740) 0.788) 0.977) 0.918) 0.944) 0.954) 0.954) 0.910) 0.875)
The external test
0.696 0.732 0.822 0.607 0.634 0.838 0.781 0.801 0.831 0.858 0.807
?ele?LabV' (0.683- (0.720- (0.808- (0.594- (0.622- (0.820- (0.766- (0.784- (0.819- (0.840- %881238()0'799 (0.789-

plus 0.722) 0.745) 0.837) 0.620) 0.647) 0.854) 0.801) 0.820) 0.845) 0.873) - 0.824)

0.723 0.847 0.567 0.613 0.830 0.799 0.811 0.842 0.870 0.822 0.804
orerNet | (0.708- ‘_)6776732()0'750 (0.830- | (0558- | (0.601- | (0.818- | (0.787- | (0792-  |(0.825- | (0.858- | (0.805- | (0.785-

h 0.734) : 0.861) 0.580) 0.624) 0.845) 0.811) 0.828) 0.856) 0.880) 0.840) 0.823)
UPerNet. | 0:693 0.734 0.824 0.587 0.628 0.835 0.771 0.796 0.830 0.862 0.820 0.802
resnetlol | (0-682- (0.721- (0.809- (0.577- (0.614- (0.819- (0.750- (0.784- (0.818- (0.845- (0.802- (0.780-

0.718) 0.745) 0.836) 0.599) 0.640) 0.848) 0.789) 0.809) 0.845) 0.876) 0.836) 0.823)
0.692 0.734 0.826 0.606 0.635 0.835 0.776 0.795 0.830 0.865 0.819 0.803
OCRNet | (0.677- (0.723- (0.810- (0.583- (0.620- (0.818- (0.759- (0.780- (0.815- (0.850- (0.803- (0.781-
0.720) 0.746) 0.838) 0.625) 0.648) 0.849) 0.791) 0.808) 0.843) 0.881) 0.835) 0.824)
0.733 0.771 0.834 0.561 0.610 0.832 0.789 0.810 0.844 0.866 0.820 0.804
SegFormer | (0.720~ (0.758- (0.821- (0.542- (0.600- (0.815- (0.763- (0.790- (0.830- (0.848- (0.803- (0.783-
0.749) 0.782) 0.845) 0.583) 0.622) 0.847) 0.810) 0.826) 0.857) 0.882) 0.838) 0.826)
Ensemble | 0720 0.766 0.842 0.604 0.630 0.837 0.800 0.811 0.845 0.869 0.822 0.802
method (0.702- (0.755- (0.829- (0.589- (0.617- (0.821- (0.788- (0.791- (0.828- (0.857- (0.806- (0.783~
0.735) 0.780) 0.855) 0.621) 0.644) 0.854) 0.814) 0.827) 0.860) 0.880) 0.839) 0.825)
Table 2. Model performances in internal validation. The 95% confidence intervals are provided in
parentheses, with the Dice similarity coeflicient (DSC), sensitivity, and specificity.
Discussion
Our study introduced a novel approach to the segmentation of TMJ components in MR images using multi-class
deep learning, which showed significant advancements over previous methodologies. Our model demonstrated
strong performance with DSC values of 0.855, 0.711, 0.894, and 0.949 for the respective components. This
improved performance can be attributed to the innovative use of ensemble learning and Vision Transformers.
The ensemble learning approach combines the strengths of multiple models, enhancing robustness and accuracy.
Specifically, it leverages the complementary capabilities of convolutional neural networks (CNNs) and Vision
Transformers (ViTs). CNNGs are highly effective in capturing local features due to their convolutional operations,
which is crucial for detailed structure segmentation in MR images. On the other hand, ViTs, with their attention
mechanisms, excel at capturing global context and enhancing feature representation, which is particularly ben-
eficial for accurately distinguishing between closely located anatomical structures within the TM]. By integrating
these models, the ensemble learning approach ensures a more comprehensive analysis of the image data, leading
to higher segmentation accuracy. The combination of local detail capture by CNNs and global context under-
standing by ViTs allows our model to effectively handle the inherent challenges of TMJ component segmenta-
tion, such as contrast variability and visibility issues. In summary, the success of our model in achieving high
DSC values for TM] component segmentation is largely due to the synergistic effects of ensemble learning and
the advanced capabilities of Vision Transformers in enhancing feature representation and model performance.
Our research achieved significant advancements in the domain of MR imaging analysis, especially in the
context of the TM]J. The study contributions can be categorized into two primary domains. First, the inherent
challenges of MR imaging often arise from the weak signal intensity of certain anatomical structures, notably
the TMJ disc. To address this issue, we implemented a contrast enhancement algorithm. This approach not only
accentuated the visibility of the TM] disc but also sharpened the demarcation of the associated TM]J structures,
including the temporal bone and condyle. An integral aspect of this methodology was the meticulous calibration
of the hyperparameters that governed the algorithm’s performance. The optimal values for these hyperparam-
eters were identified using a comprehensive grid search technique. Note that any imprecision in this calibration
process could amplify noise levels within the MR image, underlining the importance of rigorous parameter
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Figure 3. Automatic segmentation results for different temporomandibular joints, where the red, green, and
yellow regions show the temporal bone, disc, and condyle, respectively.

tuning. Second, a well-acknowledged challenge in medical imaging is the requirement for substantial datasets
to facilitate efficient deep learning. To address the challenges associated with amassing extensive medical data,
our research leveraged transfer learning. By drawing upon insights from pretrained models on expansive data-
sets, we achieved commendable efficiency, even with the relatively limited data pertaining to TMJ MR imaging.
Moreover, we incorporated data augmentation techniques to enhance our model’s resilience to data limitations.
By integrating transformations including random rotations and shifts into our original dataset, we fortified the
model’s robustness and generalizability. Notably, our empirical observations revealed that the amalgamation of
transfer learning and data augmentation led to a performance increase of 5-10% compared to models without
these enhancements.

The results underscore the potential of Al-integrated diagnostic approaches in the realm of TMDs. Upon
analyzing physician comparative outcomes, a consistent improvement in diagnostic rates was evident upon the
inclusion of the AI-predicted mask, which suggests that the Al-assisted approach was reliable in refining clinical
decision-making processes.

For a condition such as TMJ ADD, the increase in the diagnostic rate when using the AI-predicted mask
was noteworthy. All the participating physicians demonstrated increased diagnostic accuracies, indicating the
potential of the AT model to assist in diverse clinical scenarios. A similar positive trajectory was evident in
osteoarthritis diagnosis, emphasizing the broad applicability of our segmentation models.

When considering corrections made after mask integration, the high precision rates indicated that the Al’s
impact was not confined to increasing the number of diagnoses but also included improvements in accuracy.
This is critical in a clinical setting where diagnostic precision directly influences patient care and outcomes.

From an anatomical perspective, the introduced segmentation models offer a refined method for assessing
TM]J components through MRI. By facilitating automated and meticulous insights, clinicians can gain a deeper
understanding of the intricate relationships between the TM] components. Consequently, the proposed model
would be an invaluable supplementary tool, enhancing the diagnostic process for TMDs and ensuring a higher
standard of patient care.

Our research had certain limitations. The discrepancy between the DSC measures for the internal and exter-
nal validations could be seen as a manifestation of overfitting. When a model is overfit to internal data, it may
capture noise or very specific patterns that do not generalize well to external datasets. To overcome this issue, the
model’s generalization capabilities must be enhanced. Obtaining diverse data from a variety of patients, ensur-
ing a broad spectrum of cases and scenarios, would be effective. By training the model on such augmented and
varied datasets, it could learn more general features rather than over-relying on specific patterns from a limited
dataset. Consequently, the model’s performance will improve in the external validation, making it more robust
and applicable across different patient cohorts.

Prior research on TMJ segmentation relied on a bounding box method to determine the ROI by marking
corner coordinates that encompassed the entire region. In practical clinical scenarios, an automated system is

Scientific Reports |

(2024) 14:18990 | https://doi.org/10.1038/541598-024-69814-5 nature portfolio



www.nature.com/scientificreports/

MR image Ground truth mask Prediction mask

»

Figure 4. A sample of temporomandibular joint anterior disc displacement. The upper panels show the closed-
mouth position, and the lower panels show the open-mouth position. The red, green, and yellow regions show
the temporal bone, disc, and condyle, respectively.

needed that can seamlessly extract an ROI that captures all the vital TM] components from a comprehensive
MR image. Therefore, a promising direction for future studies would be the development of a TMJ ROI detec-
tion model and its integration with our TMJ segmentation model, to establish an end-to-end automated system
for clinical application.

This study presented an innovative Al-driven methodology for the autonomous segmentation of the three
integral components of the TMJ. Employing this systematic segmentation, clinicians could considerably stream-
line the diagnostic process for various TMJ disorders. Furthermore, our Al-anchored TMJ segmentation model
delivers consistent and precise predictions, which, when combined with conventional clinical assessments, could
bolster the fidelity of the eventual diagnoses. In essence, the convergence of Al and digital dentistry offers promis-
ing avenues for enhanced diagnostic precision and efficacy in addressing dental and TM]J disorders.

Materials and methods

Study participants

The institutional review boards of Ewha Womans University Mokdong Hospital (EUMC 2020-03-012-003)
and Yonsei University Gangnam Severance Hospital (3-2020-0025) approved this study, and we affirm that all
experiments were performed in accordance with relevant guidelines and regulations. Ewha Womans University
Mokdong Hospital Institutional Review Board and Yonsei University Gangnam Severance Hospital Institutional
Review Board absolved the need for informed consent given the negligible risks posed to the study participants.
Rigorous measures were instituted to safeguard the confidentiality of the patient information throughout the
investigation. Patients exhibiting MRI artifacts and those with divergent annotations from disparate clinicians
were methodically excluded from the study.

Two distinct datasets were employed for the research’s analytical objectives: Dataset-E and Dataset-Y (Table 1).
Dataset-E was judiciously utilized for the development and internal testing of the deep learning algorithms,
while Dataset-Y was used for the external validation. Dataset-E encapsulated data from 479 participants (age
spectrum: 15-68 years; average age + standard deviation: 32 + 13 years; male constituency: 41%) accrued from
Ewha Womans University Mokdong Hospital (Hospital-E), South Korea, spanning the period from April 2005 to
April 2020. Dataset-Y encompassed data from 63 participants (age spectrum: 19-77 years; average age + standard
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Figure 5. Samples of temporomandibular joint osteoarthritis. The red, green, and yellow regions show the
temporal bone, disc, and condyle, respectively.

deviation: 33 + 13 years; male constituency: 40%) gathered from Yonsei University Gangnam Severance Hospital
(Hospital-Y), South Korea, within the identical time frame.

Magnetic resonance imaging (MRI) protocol

For Dataset-E, MRI slices were performed with a Siemens Avanto 1.5 Tesla Magnetom apparatus furnished with
dual 3-inch surface coils. The sequences recorded and used for training, validation, and testing were T1-weighted
images. The specified acquisition parameters included a repetition time (TR) of 400.00 ms, an echo time (TE)
0f 15.00 ms, a field of view (FOV) spanning 160 x 160 mm?, an acquisition matrix of 256 x 256 pixels, and a slice
thickness of 3 mm. Subsequent to the acquisition, the MR slices were digitized to resolutions of either 2048 x 2048
or 1024 x 1024 pixels and archived using the Standard JPEG 1992 format.

For Dataset-Y, MR images were procured using a 3.0-T Magnetom scanner (Achieva; Philips Medical Sys-
tems, Best, The Netherlands) complemented by 3-inch surface coils. The sequences recorded and used for train-
ing, validation, and testing were T1-weighted images. The delineated acquisition parameters included a TR of
450.00 ms, a TE of 15.00 ms, an FOV measuring 120 x 120 mm?, an acquisition matrix of 240 x 240 pixels, and
a slice thickness of 3 mm. After their acquisition, the MR slices were digitized to a resolution of 512 x 512 pixels
and archived using the Standard JPEG 1992 format.

Each participant’s MRI volumetric data comprised a total of 40 slices, divided into 20 with an open-mouth
configuration and 20 with a closed-mouth configuration. A meticulous criterion was devised to ascertain the
quintessential loci within the MRI volume to optimally visualize the TM] component. Consequently, a subset
of eight MR slices pertinent to these loci was extracted. This extraction comprised two MR slices each for the
right joint in the closed-mouth posture, left joint in the closed-mouth posture, right joint in the open-mouth
posture, and left joint in the open-mouth posture. Slices manifesting suboptimal visibility of the TM] compo-
nent or those in which segmentation masks were infeasible because of image clarity concerns were categorically
excluded. Moreover, MR slices exhibiting conspicuous artifacts were judiciously excised to maintain the integrity
and quality of the dataset.

Datasets

The comprehensive datasets consisted of paired entities: an MR image juxtaposed with its corresponding seg-
mentation mask, serving as the ground truth. For Dataset-E, the TM]J components were meticulously delineated
within a circumscribed ROI by three clinicians (Group 1: 16, 8, and 7 years of experience) in oral and maxillofa-
cial surgery and were reviewed by a single expert (JW Kim). For Dataset-Y, six clinicians (Group 2: 14, 13, 10, 9,7,
and 6 years of experience) in oral and maxillofacial surgery participated in the delineation, and a single expert (JY
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Kim) reviewed the dataset. The ROI was characterized as the minimal spatial expanse adequately encompassing
the temporal bone, disc, and condyle, which are represented in red, green, and yellow in the figures, respectively.

Dataset-E was partitioned into a development set and an intramural test set. The development set was meticu-
lously split into training subset for model training and validation subset used for the periodic assessment of model
performance, culminating in the selection of the optimal model. To ensure a balanced distribution, patients from
Dataset-E were randomly assigned at the patient-level to the training subset, validation subset, and intramural
test set at a 7:1:2 ratio. For specificity, the development set of Dataset-E included 383 patients, equivalent to 702
joints, for a total of 2,660 images. The intramural test set comprised 96 patients, which translated to 160 joints
and 532 images. By contrast, Dataset-Y was distinctively configured as an extramural test set, with data from 63
patients, for a total of 126 joints and 501 images.

Model development and test

Figure 2 represents the whole process. Beginning with an MR image, a specific "region of interest (ROI)" is
manually annotated. This ROI undergoes sequential preprocessing, including cropping to isolate the region,
contrast enhancement using CLAHE, and data augmentation. The processed image is then fed into five deep
learning models, including DeepLabV3plus paired with resnet101°°, OCRNet’!, UPerNet paired with resnet101°2,
UPerNet integrated with the Swin transformer®, and SegFormer?®*. The outputs of these models are combined
using an ensemble method, culminating in a final "prediction mask" that showcases the segmentation results.

Image preprocessing
We utilized a computer-assisted approach to extract the ROI from sagittal MR images with an automated crop-
ping algorithm, which enhanced the efficiency.

Owing to the low contrast of MR images, the contrast-limited adaptive histogram equalization (CLAHE)
technique® was implemented for the training subset utilizing the Albumentations Python library’®. The opti-
mized hyperparameters for CLAHE included a clip limit of 4 and grid size of 8.

We incorporated image augmentation to diversify the training dataset and prevent overfitting. We used
random rotations within a range of —15"to 4 15" and shifts of up to 10% for both the x and y dimensions. This
augmentation was repeated five times.

Lastly, all the ROI MR images and corresponding masks were standardized to 640 x 640 pixels. These methods
collectively supported a robust deep learning model for medical imaging.

Development and test

This research was dedicated to devising and scrutinizing deep learning models tailored to the precise segmen-
tation of the TMJ components within MRI slices. Convolutional neural networks (CNNs) have been the cor-
nerstone for image analysis. However, transformers, which are equipped with self-attention mechanisms, have
challenged this norm because of their performance in specific contexts.

Five architectures were rigorously evaluated: three grounded in CNN—DeepLabV3plus paired with resnet101,
OCRNet, and UPerNet paired with resnet101. Simultaneously, two leveraged the nuances of transformers: UPer-
Net integrated with the Swin transformer, and SegFormer. The UPerNet with Swin transformer combines the
hierarchical feature extraction capabilities of UPerNet with the powerful global attention mechanism of the
Swin transformer, allowing for improved spatial understanding and segmentation accuracy. SegFormer, on the
other hand, utilizes a transformer encoder-decoder architecture to provide efficient and effective segmentation
by capturing both local and global features, ensuring precise delineation of TMJ components. The segmentation
challenge was framed as a pixel classification task, where each pixel was either earmarked for a specific TM]
component or categorized as background.

During training, models underwent iterative evaluation across epochs. At each epoch’s culmination, the
model’s efficacy on the training subset was gauged against the validation subset, which guided the fine-tuning
of the hyperparameters. These were configured at a learning rate of 0.01, momentum of 0.9, weight decay of
0.005, batch size of 4, and span of 50 epochs. PyTorch* facilitated model development and was powered by four
NVIDIA TESLA V100 GPUs.

The cross-entropy loss function was employed to quantify the alignment between the model predictions
and ground truth. This function, which is traditionally preferred for multi-category classification, was used to
determine the discrepancies. Stochastic gradient descent was selected to train the model by minimizing this loss.

By recognizing the constraints of our dataset size, transfer learning was harnessed. This entailed the initiali-
zation of our models with weights from architectures pretrained on the PASCAL VOC 2012 dataset, followed
by fine-tuning on our TM]J dataset. This strategy, which is especially potent when grappling with limited data,
ensured a robust foundation for our models.

Lastly, ensemble techniques were integrated to assess the compounded strength of our five trained models.
Ensemble methodologies strengthen model robustness and accuracy by harmonizing predictions across dif-
ferent architectures®. In our approach, we utilized a majority voting system for individual model outputs. This
method ensures that the ensemble’s prediction is based on the consensus of the majority of models, enhancing
accuracy and reducing the likelihood of errors from any single model. By combining the strengths of both
CNN-based models and transformer-based models, the ensemble method capitalizes on their complementary
capabilities. The majority voting system ensures that the final prediction benefits from the detailed local feature
extraction of CNNs and the global context understanding of transformers, resulting in more robust and precise
TM]J component segmentation.
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Evaluation and statistical analysis

To assess the effectiveness of our models in predicting image segmentation masks, we employed a test dataset
and evaluated the similarity between the predicted and ground truth masks using the Dice similarity coefficient
(DSC), sensitivity, and specificity. The DSC was calculated using the following equation:

2x TP

DSC= ———————,
2x TP+ FP+FN

where TP represents the number of true positive pixels, FP represents the number of false positive pixels,
and FN represents the number of false negative pixels. The DSC values ranged from 0 to 1, where a higher value
indicated a better segmentation performance.

Sensitivity, also known as the true positive rate, measures the proportion of actual positives that are correctly
identified by the model. We calculated sensitivity using the following equation:

TP

Sef’lsitivity = m

where TP represents the number of true positive pixels, and FN represents the number of false negative pixels.
Sensitivity values range from 0 to 1, with higher values indicating better performance in correctly identifying
pixels belonging to the object of interest.

Specificity, also known as the true negative rate, measures the proportion of actual negatives that are correctly
identified by the model. We calculated specificity using the following equation:

TN

SpeCl:ﬁCity = m

where TN represents the number of true negative pixels, and FP represents the number of false positive pixels.
Specificity values range from 0 to 1, with higher values indicating better performance in correctly identifying
pixels not belonging to the object of interest.

To evaluate the statistical robustness of the model’s outcomes, a nonparametric bootstrap methodology was
employed to derive the 95% confidence intervals. This entailed a stochastic selection of N instances from the
test dataset through a replacement mechanism, iterated 1000 times. Subsequently, from the accrued distribution
of these 1000 bootstrap samples, the 95% confidence intervals for the DSC, sensitivity, and specificity perfor-
mance indicators were ascertained by discerning the range demarcated by the 2.5th and 97.5th percentiles. This
methodological framework provided a comprehensive estimation of the inherent variability associated with the
model’s performance.

Physician comparative analysis: diagnoses with and without Al-predicted masks
TM]J diagnostic procedure
For evaluating the clinical utility of AI-predicted masks in both the TMJ ADD and TM]J osteoarthritis diagnoses,
we involved a separate group of 3 external experts (Group 3), who had not participated in the annotation process
of either dataset. Group 3 consisted of three experienced clinicians from the department of oral and maxillofacial
surgery, with 21, 19, and 17 years of experience respectively. They assessed a set of 30 joints randomly selected
from Dataset-Y, the external test dataset. This was done to ensure a rigorous and unbiased evaluation of the
Al-predicted masks.

The MRIs for the initial diagnostic round were the same MRIs used in the following diagnostic round with
the AI masks. This was to maintain consistency and ensure that any observed improvement in diagnostic per-
formance was due to the integration of Al-predicted masks.

Calculation procedure
The increase in the diagnostic rate was calculated by determining the difference between the numbers of diag-
noses made with and without the AI-predicted mask and then dividing it by the total number of joints.

To gauge the precision of the correct diagnoses made using the Al-predicted masks, we determined the per-
centage of cases where the diagnosis was altered after mask inclusion and turned out to be correct.

Ethical approval
This study was approved by the institutional review boards of two hospitals, Ewha Womans University Mokdong
Hospital (EUMC 2020-03-012-003) and Yonsei University Gangnam Severance Hospital (3-2020-0025).
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