Table 9 Results of the predicting models.

From: A hybrid metaheuristic algorithm for antimicrobial peptide toxicity prediction

Classifier

Feature selection method

Number of selected features

Accuracy (%)

Sensitivity (%)

Specificity (%)

Positive predictive value (%)

Negative predictive value (%)

Random

AOA

100

97.35

95.90

98.66

98.47

96.39

Forest

SCA

113

97.00

96.27

97.65

97.36

96.68

WOA

113

96.29

95.52

96.98

96.60

96.01

GNDO

110

97.53

97.01

97.99

97.74

97.33

GWO

103

97.35

96.27

98.32

98.10

96.70

IGWO

92

98.06

96.64

99.33

99.23

97.05

PSO

114

96.82

95.90

97.65

97.35

96.36

h-PSOGNDO

81

98.76

98.88

98.66

98.51

98.99

Support

AOA

100

92.76

95.15

90.60

90.11

95.41

Vector

SCA

113

94.52

94.78

94.30

93.73

95.25

Machine

WOA

113

93.99

94.78

93.29

92.70

95.21

GNDO

110

93.82

95.52

92.28

91.76

95.82

GWO

103

93.11

92.91

93.29

92.57

93.60

IGWO

92

93.82

95.90

91.95

91.46

96.14

PSO

114

94.17

94.78

93.62

93.04

95.22

h-PSOGNDO

81

94.70

96.64

92.95

92.50

96.85

Naïve

AOA

100

80.74

77.24

83.89

81.18

80.39

Bayes

SCA

113

82.86

83.96

81.88

80.65

85.02

WOA

113

83.39

81.34

85.23

83.21

85.23

GNDO

110

81.63

77.24

85.57

82.80

80.70

GWO

103

83.39

81.72

84.90

82.95

83.77

IGWO

92

83.92

79.10

88.26

85.83

82.45

PSO

114

79.68

76.12

82.89

80.00

79.42

h-PSOGNDO

81

87.63

86.19

88.93

87.50

87.75

KNN

AOA

100

96.9

96.41

97.50

97.50

96.53

SCA

113

97.50

98.50

95.52

96.34

98.5

WOA

113

96.94

97.39

98.50

98.50

97.51

GNDO

110

96.33

98.13

94.53

94.26

98.15

GWO

103

97.61

97.39

97.84

97.76

97.51

IGWO

92

96.99

98.13

95.86

95.63

98.16

PSO

114

96.86

95.55

98.16

98.12

95.91

h-PSOGNDO

81

98.32

98.16

98.50

98.50

98.13

  1. Significant values are in bold.