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Colorectal cancer-associated
bacteria are broadly distributed
in global microbiomes and drivers
of precancerous change
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The gut microbiome is implicated in the pathogenesis of colorectal cancer (CRC), but the full scope of
this dialogue is unknown. Here we aimed to define the scale and membership of the body of CRC- and
health-associated gut bacteria in global populations. We performed a microbiome-CRC correlation
analysis of published ultra-deep shotgun metagenomic sequencing data from global microbiome
surveys, utilizing a de novo (reference-agnostic) gene-level clustering approach to identify protein-
coding co-abundant gene (CAGs) clusters. We link an unprecedented ~ 23-40% of gut bacteria to

CRC or health, split nearly evenly as CRC- or health-associated. These microbes encode 2319 CAGs
encompassing 427,261 bacterial genes significantly enriched or depleted in CRC. We identified

many microbes that had not previously been linked to CRC, thus expanding the scope of “known
unknowns” of CRC-associated microbes. We performed an agnostic CAG-based screen of bacterial
isolates and validated predicted effects of previously unimplicated bacteria in preclinical models,

in which we observed differential induction of precancerous adenomas and field effects. Single-cell
RNA sequencing disclosed microbiome-induced senescence-associated gene expression signatures in
discrete colonic populations including fibroblasts. In organoid co-cultures, primary colon fibroblasts
from mice with microbiomes promoted significantly greater growth than fibroblasts from microbiome-
depleted mice. These results offer proof-of-principle for gene-level metagenomic analysis enabling
discovery of microbiome links to health and demonstrate that the microbiome can drive precancer
states, thereby potentially revealing novel cancer prevention opportunities.

Abbreviations

CRC Colorectal cancer

CAGs Co-abundant genes

SEM Standard error of the mean

GF Germ-free

SPF Specific pathogen-free

PERMANOVA  Permutational multivariate analysis of variance
SASP Senescence-associated secretory phenotype
FIT Fecal immunochemical testing

Colorectal cancer (CRC) is a common cause of cancer death and suffering worldwide'. Epidemiological and
disease cohort studies implicate the gut microbiome as a critical determinant of CRC risk®*. However, while
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several carcinogenic gut microbes have been identified (e.g. enterotoxigenic Bacteroides fragilis, colibactin-
producing Escherichia coli, and Fusobacterium nucleatum), each appears to account for a minority of CRC cases,
and estimated effect sizes are modest®>~”. Further, recent metagenomic studies of CRC microbiomes implicate
increasing numbers of CRC-associated bacteria and diverse bacterial communities**~!?, with tremendous inter-
study variation complicating interpretation. Collectively, the literature appears to support the Anna Karenina
Principle!*!, i.e., that disease-associated dysbioses are more varied than health-associated microbiome configu-
rations, a phenomenon inspired by the opening line of Tolstoy’s famous book!>. We were therefore motivated to
better understand this variation and to define the scope of CRC- and health-associated microbes. We postulated
microbial associations more numerous and diverse than currently recognized.

To identify gut bacterial links to CRC across global cohorts, we performed a meta-analysis of all published
microbiome surveys with ultra-deep shotgun metagenomic sequencing data. Our aggregate dataset represented
5 countries spanning North America, Europe, and Asia (Table 1)°-'2. Acknowledging strain-level variability in
gut bacterial effects on host physiology (with potential for vastly different effects on tumorigenesis'®) and the
consequent dampening of signal-to-noise with traditional taxonomy-based approaches (notably, the typical lack
of sub-species resolution in predictive classifiers built on metagenomic data), we performed a microbiome-CRC
correlation analysis with gene-level resolution, utilizing an updated version of our previously reported de novo
taxonomy-free reference-agnostic gene clustering approach to estimate relative abundances of protein-coding
co-abundant gene (CAGs) clusters in ultra-deep shotgun metagenomic sequencing datasets'”'®. CAGs are non-
overlapping collections of microbial genes observed at tightly correlated abundances across multiple microbiome
samples, representing discrete genetic elements shared across multiple strains (i.e., a sub-species grouping)®.
CAG:s offer the opportunity to gain insights unconstrained by a more traditional taxonomic lexicon (e.g., species-
level associations, in which biologically meaningful correlations may be obscured by strain-to-strain variability,
or strain-level associations, in which statistical power may be compromised). As a result, the breadth of our
findings using this approach far exceeds the scope of microbiome-CRC associations reported to date.

Materials and methods

Metagenomic meta-analysis

We identified all published studies with ultra-deep shotgun metagenomic sequencing data (“ultra-deep” defined
here as> 107 reads/sample) and comparable metadata for use in our meta-analysis. Data from a total of 992
people (5.5 terabases of sequencing data) were analyzed. Shotgun metagenomic sequencing data were down-
loaded from the NCBI Sequence Read Archive (SRA) repository (training dataset: BioProject IDs PRJEB6070,
PRJEB7774, and PRJEB10878; test/validation dataset: BioProject ID PRJDB4176). Raw shotgun sequencing
data was processed by the geneshot pipeline (revision v0.9, commit 6d2c08e, https://github.com/Golob-Minot/
geneshot/)!8. The geneshot analysis encompassed human sequence removal (bwa mem); de novo assembly of
contigs independently within each specimen (megahit); prediction of protein-coding gene sequences from those
contigs (prodigal); de-duplication of amino acid sequences across all samples to form a gene catalog (mmseqs2);
alignment of raw shotgun sequencing data against that gene catalog (DIAMOND); probabilistically assigning
multi-mapping reads (FAMLI); and clustering co-abundant genes into CAGs using a maximum cosine distance
threshold of 0.2'7. The gene-level metagenomic analysis we employed here was updated from our initial proof-
of-concept'” by (i) expanding the collection of input datasets used to train the CAG model and (ii) updating the
analytical approach such that the metagenomic space could be coalesced into 40% fewer CAGs, which permits
more statistically efficient discovery of differences in abundances between groups. The coefficient of association of
each CAG with CRC status was estimated by beta-binomial regression with corncob®, controlling for systematic
differences in microbial abundances across studies. Taxonomic annotation of the gene catalog was performed
by amino acid alignment to the NCBI RefSeq database (downloaded January 27, 2021), computing the lowest
common ancestor of all organisms within 5% of the top-scoring alignment (DIAMOND). For benchmarking,
taxonomic classification of raw reads was also performed by the geneshot pipeline using MetaPhlAn (v2.8). The
coefficient of association for each MetaPhlAn-reported species was estimated by beta-binomial regression with
corncob. For validation testing, raw shotgun sequencing reads from the test dataset were aligned against the gene
catalog generated from the training dataset to estimate the relative abundance of the CAGs in that independent
cohort. The relative abundance of organisms in the validation dataset was not used to generate the gene catalog,
CAG groupings, or CRC-associations reported in this study.

Microbial genome annotation
The presence of genes identified from metagenomic analysis in individual microbial genomes was performed by
amino acid alignment of the six-frame conceptual genome translation (using the bacterial NCBI genetic code

Median sequencing
Dataset role NCBI BioProject ID References CRC cases Adenoma cases* Healthy controls depth
Training data PRJEB10878 Yuetal.!! 75 0 53 56.2 M reads/sample
Training data PRJEB6070 Zeller et al.’ 91 42 66 58.0 M reads/sample
Training data PRJEB7774 Feng et al.'? 46 47 63 52.7 M reads/sample
Test data (validation) PRJDB4176 Yachida et al."? 258 0 251 46.3 M reads/sample

Table 1. Published microbiome datasets analyzed. *Adenoma metagenomes were not used for training the
CAG-based model.
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11), and subsequent filtering of any lower-scoring alignments which overlap higher-scoring alignments by more
than 50%. Every gene-genome alignment was performed with the gig-map suite of bioinformatics tools which
is freely accessible at https://github.com/FredHutch/gig-map/wiki (commit cfe0056). The RefSeq database used
for alignment of CRC-associated microbial genes was downloaded on June 6, 2022 (n=113,938). The analysis
of Enterobacter genomes in RefSeq included 90 genomes, with > 1 representative from each Enterobacter species
in the RefSeq database, including all genomes available for the specific species mentioned.

CRC-association scores

Aggregate CRC-association scores were calculated for microbial genomes as the average CRC-association Wald
metric for each of the genes from the metagenomic gene catalog which is found within the genome at 90% amino
acid identity and 90% gene coverage. Similarly, the CRC-association score was computed for each metagenome by
weighting each detected gene by its relative abundance (based on the length-adjusted proportion of metagenomic
reads aligning to genes in CAGs).

Human subjects

To validate metagenome-based CRC-association scores in a local cohort, informed consent was obtained from
all study participants, who were recruited via Fred Hutchinson Cancer Center Institutional Review Board (IRB)
protocols 10337 and 10084. Study participants were asked to collect a fecal sample at home using a sterile stool
collection kit ("Feces catcher" from Zymo Research and standard polypropylene sterile specimen collection
container), store it immediately in their home freezer, and then mail it overnight on ice the next day using pre-
paid shipping methods. Upon receipt, fecal samples were immediately stored at — 80 °C until use. Fecal samples
from the CRC cohort were collected prior to initiation of treatment. The ‘history of advanced adenoma’ cohort
was defined as individuals who had been previously found to have high-risk precancerous adenomas (based on
larger size and/or villous histology) that had been resected via colonoscopy. From this cohort, 1-2 fecal samples
were collected per person for a total of 19 samples. From the healthy control cohort, 1-2 fecal samples were
collected per person for a total of 5 fecal samples. Fecal samples were subjected to metagenomic sequencing.

Preclinical mouse experiments

All experimental protocols were approved by the Institutional Animal Care and Use Committees of Fred Hutch-
inson Cancer Center and the University of Washington, and all methods were carried out in accordance with
institutional guidelines and regulations. Experiments testing effects of different bacterial consortia on tumorigen-
esis and colonic gene expression were performed on male and female Apc™™* mice (an established CRC model),
offspring of Apc™™* and 1110-/- mice (a reported microbiome-responsive CRC model?'), and wild-type C57BL/6
mice that were 6-8 weeks old at the start of experiments. Mice were randomly assigned to treatment groups.
Gnotobiotic animal breeding and husbandry was performed as previously described*. Mice were fed an irradi-
ated diet with moderately high fat content (9%) ad libitum. To deplete the resident mouse microbiota of con-
ventionally raised specific pathogen-free mice, an antibiotic cocktail (ampicillin 1 g/L, neomycin 500 mg/L and
metronidazole 1 g/L) in sucrose-containing water (20 g/L) was administered for 10 days. Anaerobic preparation
of bacterial consortia and uncultured intact human fecal microbiota was performed as previously described?®.
Microbiota transplantation was performed via oral gavage (5 times over 10 days). Apc™™* mice were euthanized
10 weeks after initial gavage, and offspring of Apc™™* and I110-/- mice were euthanized 8 weeks after initial
gavage (earlier than planned due to institutional guidance early in the COVID pandemic). Small intestines and
colons were harvested, measured, and filleted open longitudinally for visual inspection and tactile examination
to identify, quantify, and measure tumors. Fresh fecal pellets were collected from mice throughout experiments
in sterile tubes, snap-frozen in liquid nitrogen, and stored at—80 °C until use. All methods are reported in
accordance with ARRIVE guidelines.

Histologic analysis

Small intestinal and colonic tissues harvested from mice were subjected to hematoxylin and eosin and Ki-67
staining. Inflammation was scored by a pathologist blinded to group using a modification of an established
scoring criteria®*. Specifically, scoring schemes 4 and 5 were used for colon and small intestine, respectively.
Scores range from 0 to 5, with a score of 1 being mild changes and 5 representing marked pathological changes.
These schemes were modified to include only the ‘severity; ‘extent, and ‘mucosal architecture’ parameters; the
‘epithelial changes’ category was excluded, as all mice had adenomatous polyps and thus would automatically
be categorized as marked hyperplasia, category 5.

Multiplexed shotgun metagenomic sequencing of fecal samples

Genomic DNA was extracted from fecal samples using a phenol/chloroform-based protocol. Genomic DNA
was sheared using a Covaris LE220 ultrasonicator (Covaris, Woburn, MA). Sample-specific barcoded adapters
were ligated to end-repaired DNA fragments, after which libraries were prepared for sequencing on the Illumina
MiniSeq platform (75 nt single-end reads). Reads mapping to the mouse genome (UCSC mm10; Bowtie2, ver-
sion 2.2.5%°) or estimated to have > 1 error (USEARCH, version 112°) were removed; and taxonomic classifica-
tions were performed with MetaPhlAn2% using default parameters. CRC-association scores were calculated as
described above.
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Cell viability assay

Caco-2 cells were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). To test for
growth-promoting secreted bacterial products of the CRC-associated consortium and health-associated con-
sortium, we cultured Caco-2 cells in media containing fecal filtrates from gnotobiotic mice colonized with these
consortia and quantified cell viability as previously described?.

Bulk RNA sequencing of the colon

RNA was isolated from mouse colons and run on NanoString nCounter Tumor Signaling 360 panels, with data
analysis performed as previously described?. The gene Gdf15 was quantified in the same samples using previ-
ously described qRT-PCR primers and methods?.

Single-cell RNA sequencing and analysis

Mouse colonic tissue samples were disassociated and processed for single-cell sequencing by the Fred Hutch-
inson Cancer Center Genomics Core using the 10X Chromium Single Cell 3° Reagent Kits User Guide (v3.1
Chemistry) on the Illumina NovaSeq platform (S2 flow cell). Differential relative gene expression was tested
within each cell subset independently, comparing the level of expression of each gene between the two groups
of mice. Statistical significance of differences in gene expression were calculated with DEseq2* v1.34.0 using the
Nextflow workflow FredHutch/pw-differential-expression (https://github.com/FredHutch/pw-differential-expre
ssion, commit 1e2d036). Gene set enrichment analysis® was performed with fgsea®! v1.20.0 using the Nextflow
workflow FredHutch/pw-gene-set-enrichment (https://github.com/FredHutch/pw-gene-set-enrichment, commit
3686€70). Hallmark gene pathways v7.5.1 were downloaded from MSigDB*. Gene expression-based classifica-
tion of cells as senescent was performed using enrichment scores based on the SenMayo panel of 125 genes® was
calculated for each cell. As prescribed in the original paper,* we considered the top 10% of cells to be senescent.

Assessment of microbiome-induced senescent fibroblast growth effects in organoids

Microbiota depletion was performed in a subset of mice as described above prior to harvesting primary colonic
fibroblasts and generating organoids. Mouse colon organoids were generated using a modified version of an
established protocol*. Briefly, following euthanasia, mouse colons were harvested, fecal matter was removed,
and colons were washed repeatedly with ice-cold phosphate-buffered saline (PBS; Gibco) until no visible debris
remained. Colons were cut into ~ 5 mm fragments and shaken 15 x in ice-cold 5 mM ethylenediaminetetraacetic
acid (EDTA)-PBS buffer, then allowed to settle by gravity on ice. The 5 mM EDTA-PBS buffer was replaced, and
fragments were incubated for 30 min on a benchtop roller at 4 °C. Supernatant was removed and replaced with
10 mL ice-cold PBS. Colon fragments were vigorously shaken for 10 s, and the PBS, now containing intestinal
crypts, was collected. The PBS crypt collection was repeated a total of 3 times, and an equal volume of Basal
Media containing 5% fetal bovine serum (FBS; Sigma) was added to each fraction. The fractions were then filtered
through a 100 pM and 70 puM strainer. An aliquot of each collection fraction was examined under a microscope
for the presence of intact crypts. Once the presence of intact crypts was confirmed, fractions were pooled. Intes-
tinal crypts were pelleted at 4 °C, washed with Basal Media containing 5% FBS, pelleted again and supernatant
removed. The intestinal crypt pellet was suspended in ice cold Matrigel (Corning) and 30 uL droplets were plated
onto a 24-well plate. The Matrigel was allowed to harden for 15 min at 37 °C, and 500 pL of IntestiCult Mouse
Organoid Growth Medium (StemCell Technologies) plus 10 uM Rho Kinase Inhibitor Y-27632 (Fisher Scientific)
was added to each well. Intestinal organoids were grown under standard tissue culture conditions. Media was
changed every 2-3 days, and organoids were passaged weekly. Mouse primary colon fibroblasts were isolated and
cultured as previously described*. Briefly, following euthanasia, mouse colons were harvested, fecal matter was
removed, and colons were washed repeatedly with ice-cold PBS until no visible debris remained. Colons were
then added to a 50 mL conical tube containing 25 mL of room temperature 5 mM EDTA-Hanks” Balanced Salt
Solution (HBSS) (Gibco) and incubated in a shaking air bath at 37 °C for 15 min. Supernatants were removed and
replaced with fresh 5 mM EDTA-HBSS, followed again by an incubation period; this cycle was repeated a total
of 5 times. Colons were washed twice with ice-cold PBS and 20 mL of "RPMI-5 buffer" (recipe for 500 mL: 454.5
mL of Roswell Park Memorial Institute 1640 buffer [RPMI], 25 mL of FBS, 5 mL of 200 mM L-glutamine, 5
mL of 1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES] at pH 7.4, 5 mL of 100 mM sodium
pyruvate, 5 mL of 100x Penicillin-Streptomycin, and 500 mL of 50 mM beta-mercaptoethanol in PBS; Sigma)
containing 10 U of dispase (Sigma), and 2000 U of collagenase D (Sigma) was added. Tissues were incubated in
a shaking air bath at 37 °C for 30 min and then pelleted. Supernatants were removed, and filter-sterilized room
temperature Ammonium-Chloride-Potassium (ACK) lysing buffer (Gibco) was used to resuspend the tissue
pellet. After resuspension, tissues were once again pelleted at 4 °C and resuspended in RPMI-5 and passed
through a 70 puM filter. Fibroblast suspensions in media were plated in T75 tissue culture flasks and grown at
37 °C. After an overnight incubation, cells were washed gently with RPMI-5 media, allowing only adherent cells
to remain. Media was changed every 2-3 days and fibroblasts were passaged after 5 days. Mouse colon organoid
and fibroblast co-cultures were performed using a modified version of our published protocol?. Briefly, mouse
colon organoids were dissociated into a single cell suspension utilizing TrypLE express enzyme (Thermo Fisher).
Once organoids were dissociated, an equal volume of basal organoid media plus 10 uM Rho Kinase Inhibitor
Y-27632 was added to the suspension, and cells were pelleted at 4 °C. A live cell count was taken, and 2.5 x 10*
cells were plated in a 30 uL droplet of ice-cold Matrigel per well in a 24-well deep well TC treated plate (Corn-
ing), with six replicates per organoid line plated. Four independent organoid lines were used (2 isolated from
mice with a gut microbiome and 2 from mice treated with antibiotics for microbiota depletion). The Matrigel
was allowed to harden at 37 °C for 15 min, and 500 pL of IntestiCult Mouse Organoid Growth Medium plus
10 uM Rho Kinase Inhibitor Y-27632 was added to each well. Corning HTS Transwell inserts were placed into
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each well. Two mouse fibroblast lines were trypsinized, collected, and pelleted (one isolated from a mouse with
a gut microbiome and the other from a mouse treated with antibiotics for microbiota depletion). Each line was
resuspended in RPMI-5 media. Live cell counts were taken, and 6.25 x 10° cells were plated onto each insert in 500
uL of media. Co-cultures were seeded in duplicates, and ‘no co-culture’ controls were performed. The co-culture
was grown under standard conditions for 4 days. After 4 days, the inserts containing fibroblasts were removed,
and the organoid media was gently aspirated. 400 pL of fresh Basal Media and 400 L of CellTiter-Glo 3D Cell
Viability Assay (Promega) were added to each well. Manufacturer’s instructions were followed. The luminescence
signal was allowed to stabilize for 30 min in the dark. Each well was aliquoted into three technical replicates in an
opaque welled 96-well plate. The luminescence signal was read on a Varioskan LUX microplate reader (Thermo
Fisher), and total cell metabolic activity, as represented by the luminescence readout, was recorded.

Mock fecal immunochemical testing (FIT) kit assays

A FIT sampling bottle contains 2 mL of HEPES buffer (Polymedco), and users are instructed to provide a small
amount of stool that covers the grooved portion of the stick (estimated to be < 50 mg*®). To mimic clinically
used FIT kits, “mock FIT kits” were prepared using 50 mg aliquots of 1 of 4 different human fecal samples
in 2 mL HEPES buffer in an anaerobic chamber. Aliquots were allowed to incubate for 0, 1, 3, 7, or 14 days
at—-80°C,—-20°C, 4 °C, 25 °C, or 37 °C (with each unique condition tested in replicate) before being subjected
to genomic DNA extraction and deep shotgun sequencing on the Illumina NextSeq 2000 platform (150 nt
paired-end reads). Metagenomic analysis and calculation of CRC-association scores were performed as above.

Data analysis

Statistical comparisons were performed in R (version 4.0.0) and Python (version 3.8). Figures were generated
using built-in functions in R as well as functions from the ggplot2 (version 3.1.0) and pheatmap (version 1.0.12)
packages. Boxplots represent median (center line), the 25th and 75th percentiles (box limits), and 1.5 x interquar-
tile range (whiskers); outliers beyond the whiskers are represented as points. Error bars in bar plots represent
standard error. Figures were assembled in Adobe Illustrator.

Results

CAGs identify previously unknown CRC-microbiome associations

In our training dataset of ultra-deeply sequenced samples (55,828,959 + 826,869 reads/sample [mean + SEM],
median 56,177,744 reads/sample), we identified a total of 22,295 CAGs representing 1,858,307 microbial
genes. Individual fecal microbiomes harbored between 10,280 and 426,560 microbial genes (226,879 + 3,441
[mean + SEM]) and between 2655 and 13,094 CAGs (8284 + 88 CAGs/sample [mean + SEM]; Fig. 1A). Within
microbiomes, numbers of assembled microbial genes and of CAGs were significantly correlated (Pearson cor-
relation rho 0.81, p< 107" Fig. 1B), and each was correlated with sequencing depth (genes: rho 0.48, p<107'5;
CAGs: rho 0.29, p <107°). CAGs were bimodal in size (Fig. S1) and much smaller on average (83.4+4.0 genes/
CAG [mean + SEM]) than gut bacterial genomes®’. Neither bacterial genes per person nor CAGs per person were
significantly different between CRC and healthy cohorts (Fig. 1A).

Using a beta-binomial regression model,”® we identified 2319 distinct microbial CAGs harboring 427,261
total genes whose abundances in fecal microbiomes were consistently and significantly correlated (q <0.05) with
either CRC (1128 CAGs) or health (1191 CAGs) (Fig. S2A; Table S1A)". These 2,319 CRC-or-health-associated
CAGs were observed at varying abundances spanning several orders of magnitude, from extremely rare to highly
prevalent, encoded in the genomes of phylogenetically diverse bacteria (Figs. 1C, S2B). Consistent with previously
reported observations, CRC-associated CAGs are enriched in the Bacteroidetes, Proteobacteria, and Fusobacteria
phyla, while health-associated CAGs were enriched in Actinobacteria and Firmicutes phyla (p <0.005, Fisher’s
exact test; Figs. 1D, S2C). Remarkably, many of the CAGs enriched in CRC were found in bacterial species that
are not recognized as CRC-associated (e.g. Bacteroides cellulosilyticus, Bacteroides thetaiotaomicron, Prevotella
copri, Ruminococcus torques, Dialister pneumosintes, Doreaformicigenerans, and Faecalibacterium prausnitzii;
Table S1B). These associations were often complex and variable within species: for example, 596 CAGs mapped to
E prausnitzii genomes, and significant associations spanned from strongly health-linked to strongly CRC-linked,
with Wald statistics ranging from — 3.7 to 3.8 (Table S1A-D). In our benchmarking taxonomy-based analysis of
the same data, E prausnitzii had an estimated coeflicient of -0.25 (health-associated) that was non-significant
(g=0.4). E prausnitzii was not unique in this regard: members of numerous bacterial species lacked significant
correlations with CRC or health in a taxonomy-based analysis but harbored CAGs with significant CRC-or-health
associations that were often wide-ranging within species (Fig. 1E, Table S1A,D), illustrating the granularity of
CAG-level resolution in metagenomic analysis.

Of the 22,295 CAGs identified in total, 10.5% of CAGs (representing 20.4% of total genes) were significantly
enriched in CRC, while 12.0% of CAGs (16.9% of total genes) were significantly enriched in health (totaling ~23%
of all CAGs). When CAGs were weighted by mean relative abundances across all samples in the aggregated data-
set, 18.7% and 21.7% of CAGs were significantly enriched in CRC or in health, respectively, totaling 40.4% of all
CAGs. In other words, upwards of ~40% of gut bacteria may be carcinogenic, chemoprotective, or secondarily
affected by CRC. In contrast, in a traditional taxonomy-based analysis, just 25 bacterial species were significantly
correlated with either CRC or health (i.e., 11.4% of all taxa identified at >0.1% abundance; Table S1E). Of these,
8 were annotated taxonomically as being “unclassified” members of a particular genus (e.g. Butyrivibrio_unclas-
sified), while our CAG-based approached identified species harboring CRC-or-health-associated CAGs (e.g.
Butyrivibrio crossotus, Butyrivibrio hungatei, Butyrivibrio sp. M55, Butyrivibrio sp. XPD2006, Butyrivibrio sp.
VCD2006), underscoring limitations of traditional taxonomy-based approach and further evidencing the poten-
tially greater sensitivity of a CAG-based approach.

Scientific Reports |

(2024) 14:23646 | https://doi.org/10.1038/s41598-024-70702-1 nature portfolio



www.nature.com/scientificreports/

2500

!
N o N} IS )

health-associated <€—— Wald statistc —3» CRC-associated
L
A

W crc B ° D
W healthy 125004 rho0.81
p<107®
)
(A Actinobacteria
10000
@
<<-'(> Bacteroidetes
8}
1x10°  2x10° 3x10° 4x10° s
numbers of genes assembled per sample 2 7500 Firmicutes ] *
5 )
< .
5000 Fusobacteria W CRC-associated
] W cre M nhealth-associated
?O [ adenoma Proteobacteria ]x-
L4 M nhealthy
25004 @ 10" 102 10°
T T T T numbers of CAGs
5000 7500 10000 12500 0 x10° 2x10°  3x10°  4x10°
numbers of CAGs assembled per sample number of genes
Phylum species that includes 21 CAG that is
Actinobacteria 6 — significantly associated with CRC or health
Bacteroidetes CRC-associated mean Wald statistic for a given species
Firmicutes T 3
Fusobacteria @
. 82
Proteobacteria 5% g,;,
Other :‘g’, g2 0+
Sz §
o
=5
¢ *7
CAG Size (log10)
12 health-associated
;: -6 unique bacterial species (354 total)

3.0
36
4.2

-75

-7.0

6.5 -6.0 -5.5 -5.0

Proportional abundance (normalized for
gene length and sequencing depth)

Fig. 1. Association of diverse microbial CAGs with CRC and health. (A) Stacked histogram depicting numbers
of genes assembled per sample (top) and CAGs per sample (bottom). (B) Correlation between numbers of
CAGs and genes across the aggregated training dataset, color-coded by cohort. The gray dots, which represent
metagenomes from individuals with adenomas, were not used in generating our CAG-based model. (C)
Bacterial CAGs that are enriched in CRC or in health are encoded in the genomes of phylogenetically diverse
bacteria observed at varying abundances, from extremely rare to highly prevalent. (D) Phylum-level differences
between CRC-associated and health-associated CAGs. (E) CRC-association Wald statistics of all identified
CAGs, collapsed by species-level taxonomic classifications and rank ordered by mean Wald statistic.

Divergence of gut bacterial CAGs in CRC and in health

Consistent with expectations, a significantly greater proportion of sequencing reads generated from CRC micro-
biomes aligned to CRC-associated CAGs than to health-associated CAGs (p < 107'%, Mann-Whitney U test;
Fig. 2A). Conversely, healthy microbiomes were characterized by a greater proportion of reads mapping to
health-associated CAGs than CRC-associated CAGs (p < 107'8, Mann-Whitney U test; Fig. 2A). The log-ratio
of sequencing reads mapping to CRC-associated CAGs versus health-associated CAGs was significantly greater
in CRC microbiomes than healthy microbiomes (p <1078, Mann-Whitney U test; Fig. 2B). We validated our
findings in an independent dataset'? and similarly observed a significantly greater representation of CRC-asso-
ciated CAGs in CRC microbiomes than in healthy microbiomes (p <0.007, Mann-Whitney U test comparing
log-ratios; Fig. S3A).

Interestingly, the proportion of reads of any metagenomic sample that mapped to health-associated genes
was inversely proportional to the proportion mapping to CRC-associated genes (Figs. 2C, S3B). Within micro-
biomes (i.e., in correlation analyses performed within individual metagenomes), CRC-associated CAGs were
more likely to co-occur with other CRC-associated CAGs than they were with health-associated CAGs, and
vice versa (Fig. 2D,E). This divergence was also observed across microbiomes despite the sample-to-sample
variability, population-to-population variability, and diversity of CRC-associated or health-associated CAGs
(Fig. S4). CRC-associated and health-associated CAGs may reflect antagonistic ecological forces and distinct
ecosystems of synergistic CAGs.

We next asked whether this divergence exists within individual bacterial genomes as well. Using the NCBI
Reference Sequence Database (RefSeq), we quantified the proportion of RefSeq bacterial genomes encoding
CRC-or-health-associated CAGs by aligning the complete CAG catalog from our metagenomic analysis against
the RefSeq database. Of the 12% of RefSeq genomes containing > 1% CRC-or-health-associated CAGs, genomes
tended to contain only positively or negatively CRC-associated genes, but typically not both, with the exception
of 9 genomes (Fig. 2F,G) that belong to Enterobacter (Figs. 2G, S5), a genus of gut bacteria which have previously
been associated with human cancers®®>°. Nonetheless, the dominant trend seen in our metagenomic dataset of
inversely proportional representation of CRC-associated or health-associated signatures was seen also within
individual bacterial genomes.
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Fig. 2. Divergence of CRC-associated CAGs and health-associated CAGs. (A) Proportion of metagenomic
shotgun sequencing reads from CRC cohorts vs healthy cohorts that align to CRC-associated or health-
associated CAGs. (B) Log ratio of CRC-vs-health-associated CAG aligning proportions of reads in the training
dataset. (C) Proportion of reads within samples aligning to CRC-associated or health-associated CAGs in the
training dataset. (D) Significant correlations between CRC-associated CAGs, between health-associated CAGs,
and between CRC-associated and health-associated CAGs. (E) Circos plot showing significant correlations
between top CRC-associated and health-associated CAGs. Ribbon widths indicate correlation coeflicients.
Correlations between health-associated CAGs and between CRC-associated CAGs are represented by blue and
orange ribbons, respectively, while a single significant correlation between a CRC-associated CAG (CAG3)
and health-associated CAG (CAG170) is shown in green. (F) Proportions of individual RefSeq genomes
aligning to CAGs with Wald statistic of > 1 or< — 1 using a> 1% genome alignment threshold. (G) Genomes of 9
Enterobacteriaceae aligned to both CRC-associated and health-associated CAGs.

CAG-based CRC-association scores are greater in precancer states than in health
To apply our findings more easily to microbiomes or individual bacterial strains, we then created a summary
metric that can be calculated for any given metagenome or genome:

n
X = Z (abundance; * Wald;)
i=1

where x is the ‘CRC-association score’; n is the total number of CAGs; i is each individual CAG; abundance is
the proportion of reads aligning to the set of genes in each CAG (adjusting for gene length) such that the sum
of abundances across all n CAGs is 1; and Wald metric is the degree of association of a CAG with either CRC
(positive Wald) or health (negative Wald). This scoring metric faithfully recapitulated our earlier analysis: CRC
cohorts had significantly higher CRC-association scores compared to healthy cohorts in each of the studies used
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in our meta-analysis (p <0.05, Mann-Whitney U test; Fig. 3A, Table S2). Notably, CRC-association score ranges
varied by study, underscoring the importance of selecting controls from the same population.

Although our CAG-based model had been generated using only sequencing data from CRC or healthy
cohorts, microbiomes associated with advanced adenomas (precancerous growths deemed to be high-risk based
on size and/or histology; included in studies PRJEB7774 and PRJEB6070) had significantly higher CRC-asso-
ciation scores than healthy controls (p=0.04, ANOVA), intermediate between healthy and CRC cohorts from
the same populations (Fig. 3B).

We sought to further validate CRC-association scores in local cohorts of individuals diagnosed with CRC
(n=13), individuals with a history of advanced adenoma (#=11), and healthy controls (stringently defined as
having had 2 + colonoscopies and never having polyps; n=4). We generated shotgun metagenomic sequencing
data from their fecal samples (6.8 M £ 2.9 k reads per sample [mean +/-SEM]). As predicted, CRC-association
scores were significantly higher in CRC microbiomes than in the adenoma cohort (p <107, Student’s two-tailed
t-test) or in healthy individuals (p < 107°, Student’s two-tailed #-test) (Fig. 3C). CRC-association scores in the
adenoma cohort were intermediate and bimodally distributed, evidencing variation in microbiome-associated
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Fig. 3. Metagenome-based CRC-association scoring of individuals with CRC, adenoma, or history of advanced
adenoma compared to healthy controls. (A) Significantly different CRC-association scores in CRC versus
healthy cohorts in the datasets analyzed here. (B) CRC-association scores of fecal microbiomes from individuals
with adenoma or CRC compared to healthy cohorts in two published studies. (C) Validation of CRC-association
scores in local cohorts of individuals with CRC, history of advanced adenoma, or neither (i.e., healthy controls).
A bimodal distribution of scores was seen in individuals with a history of advanced adenoma (adenomay,; and
adenomay,,,). In this plot, each individual is represented only once (first time point [T1] sample only) to avoid
pseudoreplication in the statistical analysis. (D) Fecal microbiomes collected from individuals with history

of advanced adenoma as a part of this study, rank-ordered by CRC-association scores (dot plot, top), and
underlying abundances of top 10 CRC-associated CAGs and top 10 health-associated CAGs (heatmap, bottom).
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CRC risk. The wide distribution of CRC-association scores corresponded to variability in the underlying CRC-
or-health-associated CAGs (Fig. 3D).

We then assessed feasibility of calculating CRC-associated scores from residual stool in fecal immunochemi-
cal testing (FIT) kits, building upon preliminary reports of microbiome profiling in combination with FIT364%41,
To mimic real-world exposures, we prepared “mock FIT kits” from 4 fecal microbiomes from the adenoma
cohort, subjected them to varying temperatures for various time intervals, generated shotgun metagenomic
sequencing data, and calculated CRC-association scores. Fecal microbiota donor was the predominant and most
significant factor determining CRC-association score, more so than time or temperature (microbiota donor:
Pp<107'3, F; 150=322; time: p<0.01, F, ;3,="7; temperature: p=0.2, F, ;3,=2; three-way ANOVA; Fig. S6). These
results suggest that fecal microbiome CRC-association scores may be robust to short-term real-world time and
temperature exposures of stool samples.

CRC-association scores predict tumorigenicity
We next sought to prospectively demonstrate causality of microbiomes encoding CRC-associated CAGs in a
preclinical model. We first performed an agnostic screen of a panel of 48 gut bacterial type strains that have
undergone whole-genome sequencing. As in RefSeq genomes, we observed a distribution of CAG representation
(Table S3) and CRC-association scores (Fig. 4A). Using these scores, we designed two consortia of bacteria not
previously appreciated as cancer drivers (Figs. 4A, S7): our CRC-associated consortium was comprised of Bac-
teroides fragilis NCTC 9343 (i.e., non-toxigenic B. fragilis), Clostridium asparagiforme DSM 15981, Clostridium
bolteae ATCC BBA-613, Clostridium symbiosum DSM 934, and Ruminococcus gnavus ATCC 29149; and our
health-associated consortium included Bifidobacterium pseudocatenulatum DSM 20438, Coprococcus comes
ATCC 27758, Dorea longicatena DSM 13814, Eubacterium rectale ATCC 33656, and Blautia obeum ATCC 29174.
We colonized germ-free (GF) mice harboring a mutation in Apc, the tumor suppressor gene commonly
mutated in CRCs and adenomas®?, with either the CRC-associated or health-associated consortium (n=6-9/
cohort). Apc™™™* mice are genetically predisposed to developing intestinal tumors, but when rederived as GF,
they have almost no tumor burden?! and therefore serve as a useful baseline for testing tumorigenic properties
of microbes. We also used I110-deficient Apc™* mice as a second CRC model*! to test robustness. Metagenomic
sequencing data generated from fecal pellets collected from these gnotobiotic mice confirmed that the mouse
microbiomes retained the CRC-or-health-associated genomic signatures of the input communities (p <0.007,
two-tailed Student’s t-test; Fig. 4B). While I110-deficient mice had reduced tumor burden overall, the CRC-
associated bacterial consortium induced significantly greater tumor burden in gnotobiotic mice compared to
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the health-associated consortium (microbiota: p=0.03, F, ;¢5=>5.9; 1110 genotype: p <1073, F, ¢30=22; two-way
ANOVA; Fig. 4C). Tumor size did not significantly differ between cohorts.

Histologic analysis revealed minimal surrounding inflammation observed (Fig. S8), with no significant differ-
ence in inflammation scores between treatment groups (both CRC consortium-colonized and health consortium-
colonized mouse cohorts had a median score of 1, with range 0-2 out of maximum 5). Tumors were precancerous
adenomas (typical in Apc™™/* mice). These results suggest that members of our consortia transmit predicted
tumor phenotypes, providing in vivo validation of in silico predictions. However, it should be noted that small
intestinal (not colonic) tumor burden was the readout used here, a limitation necessitated by toxicity of colonic
tumor-inducing dextran sodium sulfate (DSS) in the gnotobiotic setting, as discussed in Supplemental Text.

Microbiome-driven induction of senescence

We assessed direct growth-promoting effects of these bacterial consortia by culturing Caco-2 cells in media
containing fecal filtrates from gnotobiotic mice colonized with either the CRC-associated or health-associated
consortium?. No significant difference was observed in Caco-2 cell viability between consortia, suggesting that
there were no growth-promoting products secreted by the CRC-associated consortium that could explain our
tumor phenotype (Fig. $9).

We therefore asked whether the CRC-associated consortium indirectly induced tumorigenesis. Field canceri-
zation is the phenomenon in which visually and histologically normal tissue acquires molecular alterations that
predispose it to cancer. In order to identify colonic field effects attributable to the CRC-associated consortium
while minimizing detection of artifactual late-in-life responses to microbial colonization of GF mice*, we utilized
specific pathogen-free (SPF) Apc/* mice, which we treated with antibiotics at 6-8 weeks of age, recolonized
with CRC-associated or health-associated consortia, and euthanized 9-10 weeks later (1 =8/cohort). We then
assessed field effects in healthy-appearing colonic tissues. Mice colonized with these consortia harbored distinct
colonic transcriptomic signatures (p <0.02, PERMANOVA; Table S4). The CRC-associated consortium was
associated with higher expression of Cdkn2a (which encodes p16™¥*), Gdf15, E2f2, and Ifng, which are hallmark
features of senescence (Fig. 5A), an aging phenomenon linked to CRC?. Genes in epithelial-to-mesenchymal
transition (Cd44, Ptgs2), DNA damage repair (Pclaf), the NF-kB pathway (Trafl, Ptgs2, Lat), and other inflam-
matory pathways (Cd44, Ifng, Pdcd1lg2 [which encodes PD-L2]) were also upregulated in mice colonized with
the CRC-associated consortium (Figs. 5A, S10). Colonic tissues were stained for p21 to identify senescent cells,
and while positively staining cells were detectable, overall levels were too low to reliably quantify and compare.

To investigate whether the microbiome can induce senescence, we first reanalyzed published single-cell RNA
sequencing (scRNAseq) datasets—reasoning that microbial induction of senescence may be specific to discrete
cell populations—from studies comparing colonic cells in GF and conventional SPF mice***, reasoning that
such a comparison would provide us insights into generalizable microbiome effects pertinent to CRC. To classify
cells as senescent or not, we utilized a recently validated, gene expression-based method for defining senescence
in which cells are scored on the basis of expression of 125 senescence-associated genes (“SenMayo panel”), with
the top 10% of cells classified as senescence-associated secretory phenotype (SASP) cells®. In our reanalysis of
raw FASTQ single-cell sequencing data published in a study of colonic myeloid cells*, we found that a greater
proportion of cells from SPF mice were senescent compared to GF mice (12.1% vs 7.9%), and SenMayo enrich-
ment scores were significantly higher in SPF mice (1054 +3 vs 1016+ 3, p<107", Student’s two-tailed ¢-test).
Senescent cells were predominantly concentrated in stromal cells and macrophages, with 35% and 15% of each
population exhibiting a senescent gene expression phenotype, respectively. This trend was reflected in a separate
study® in which 78% of macrophages, 56% of monocytes, and 52% of neutrophils were senescent.

To assess reproducibility of these findings, we generated scRNAseq data from full-thickness healthy-appearing
colonic tissues harvested from (i) age-matched SPF Apc™"/* and wild-type mice, half of which had received
antibiotics for microbiome depletion (1 =4; 3,800 £ 733 analyzed cells/sample, with 9927 + 512 high-quality read
pairs/cell); and (ii) mice colonized with either the CRC-associated or health-associated consortium (n=3-4/
treatment group; 466 + 136 analyzed cells/sample, with 6267 + 804 high-quality read pairs/cell). After dissociat-
ing cells from the harvested colons of these mice, gene expression at single-cell resolution was assayed with the
10 x Chromium single-cell sequencing platform. After clustering and classifying cells (Fig. 5B), we found that the
cellular populations with the highest proportions of senescent cells were stromal cells (76%), neutrophils (49%),
and macrophages (46%) (Fig. 5C). These cell types also had the highest SenMayo enrichment scores of 3781+ 13,
3455+ 15, and 3417 + 26, respectively, which was significantly greater than any other population of cells (p< 107",
Student’s one-tailed t-test; Fig. 5D). We also observed a moderately high distribution of SenMayo enrichment
scores in endothelial cells (3064 + 12) as well as mildly elevated scores in T cells (2407 +7) and EpCAM(+)
cells (2337 £4) (Fig. 5C,D). Interestingly, the high SenMayo enrichment scores of the different senescent cell
populations were attributable to expression of largely non-overlapping subsets of the SenMayo panel (Fig. 5E),
evidencing heterogeneity in gene expression programs underlying senescence.

Mice harboring a complete microbiome had significantly higher SenMayo enrichment scores overall (p <0.01,
Student’s one-tailed ¢-test) and higher proportions of senescent cells (14.4% vs 9.2%) compared to mice that had
undergone antibiotic-mediated microbiome depletion. This effect was largest in stromal cells, of which 79% vs
68% were classified as senescent in microbiome-harboring vs microbiome-depleted mice, respectively.

Mice colonized with the CRC-associated consortium had a greater proportion of senescent cells compared to
mice harboring the health-associated consortium (10.4% vs 6.9%). SenMayo enrichment scores were significantly
higher in stromal cells (3834 +21 vs 3753 £ 36, p <0.03, Student’s one-tailed t-test) and macrophages (3498 +32
vs 3186 £67, p< 1074, Student’s one-tailed #-test), suggesting that there is a link between the microbiome, senes-
cence, and tumorigenesis.
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Fig. 5. The microbiome induces senescence in specific colonic cell populations, which then drives epithelial
cell growth phenotypes. (A) Differentially expressed genes in healthy-appearing non-tumor colonic tissue
harvested from mice colonized with a CRC-associated or health-associated consortium. (B-C) Single-cell
RNAseq of healthy-appearing colons reveals discrete cell clusters of SASP cells, as shown in these UMAP plots.
(D) Distribution of SenMayo enrichment scores and (E) expression of different subsets of SenMayo genes in
different cell populations of the colon. (F) Microbiome conditioning of fibroblasts drives increased epithelial cell
growth in an in vitro organoid model.

These findings were seen in both Apc™™* and wild-type mice, evidencing robustness to genotype. Overall,
SenMayo enrichment scores were significantly higher in Apc*™* mice than in wild-type mice (p< 107!, Student’s
one-tailed t-test), and this was attributable to significant differences in multiple cell type-specific compari-
sons (stromal cells: 3769 21 vs 3655 + 33, p < 0.002; endothelial cells: 3271 +32 vs 3110+ 36, p <0.0005; T cells:
2503 +22 vs 2399+ 17, p<0.0002; EpCAM( +) cells: 2427 £9 vs 2199 £ 11, p < 107"%; Student’s one-tailed #-test).

Finally, we tested the hypothesis that microbiome-induced senescent tissue microenvironments can promote
growth. In our scRNAseq analysis, stromal cells (which include fibroblasts) featured prominently, and we previ-
ously reported that senescent fibroblasts create a tumor-promoting tissue microenvironment in the colon®. Thus,
we set up an ex vivo co-culture system composed of primary colon fibroblasts and 3D colonic organoids derived
either from unmanipulated SPF mice or littermates that had been treated with antibiotics, testing different com-
binations of fibroblasts and epithelial cells (4 organoid lines: 2 generated from microbiome-harboring mice and 2
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from microbiome-depleted mice; 6 replicates/line). 3D organoid proliferation, as quantified by luminescence, was
significantly higher in organoid co-cultures in which fibroblasts had been isolated from microbiome-harboring
mice (Fig. 5F; 2-way ANOVA in which luminescence was the dependent variable: fibroblast source: p <0.0002;
epithelial cell source: p <0.0003; interaction between fibroblast and epithelial cell sources: p <0.04, F, ,s=4.48).
These results were consistent across all four independent organoid lines, evidencing reproducibility. Bulk gene
expression signatures of fibroblasts sourced from mice harboring microbiomes confirmed findings from our
single-cell analysis. Our findings suggest that the microbiome does indeed condition fibroblasts to promote
epithelial cell growth.

Discussion

In summary, our findings suggest that upwards of an astounding ~ 40% of gut bacteria may be associated with
CRC or with health (specifically, a state of not having CRC or precancerous changes). In our comparison with
standard taxonomic analytic approaches, we found a greater number of associations at a higher level of taxonomic
resolution, evidencing the potentially greater sensitivity of a CAG-based approach.

Many of the microbes we identified had not previously been linked to CRC. While only a subset of these asso-
ciated microbes are expected to be causative, our findings nonetheless expand the scope of “known unknowns”
of CRC-associated microbes. We validate our CAG-based model in preclinical models, in which we observed
differential induction of precancerous field effects, namely senescence, that was attributable to the microbiome.
Through reanalysis of published and newly generated single-cell RNA sequencing from preclinical models com-
bined with an organoid-based co-culture model, we connect senescence to the gut microbiome at large. Our
findings suggest generalizability of a prior report linking two Porphyromonas species to gut senescence®. Seno-
lytics can reduce colonic tumorigenesis in a preclinical model*; by extension, targeting microbiome-induced
senescence may be a viable CRC prevention strategy. Implications of our findings may be broad, as senescent
cells, also known as ‘zombie cells*, are implicated in other disease contexts as well.

Our results serve as proof-of-principle that CAG-based analysis may offer clinically pertinent insights into
microbiome-CRC relationships and discovery of cancer prevention strategies. One limitation of this study is
that a comprehensive investigation of all CRC-associated CAGs and health-associated CAGs was not feasible.
Instead, we rely upon an agnostic screen of a panel of bacteria to design experimental consortia that we compare
in preclinical studies. This line of investigation led us to identify senescence as a microbiome-inducible precan-
cer state, and fibroblasts as microbiome-responsive host cells. However, fibroblasts are just one type of stromal
cell, and we identified several other cell types that likely experience senescence in microbiome-dependent ways
(neutrophils, macrophages) that we were unable to test. Which specific microbes are strongest inducers of senes-
cence, how those effects vary by cell type, and the significance of cell type-specific senescence gene expression
responses to the microbiome remain unclear. Finally, senescence is unlikely to be the only mechanism through
which microbiomes shape CRC risk. A comprehensive investigation and catalog of CRC-or-health-associated
CAGs and their potentially carcinogenic or cancer-preventing effects on the colonic microenvironment is war-
ranted. For example, given F. prausnitzii’s longstanding reputation as a butyrate-producing, anti-inflammatory,
health-promoting bacterium, we found it striking that F. prausnitzii-encoded CAGs had wide-ranging associa-
tions spanning from strongly CRC-linked to strongly health-linked, an observation that evidences the biological
importance of subspecies groups (e.g. the role of F. prausnitzii subspecies in atopic dermatitis*®). Strain-level
variability in the roles of E prausnitzii and other CRC-associated species in driving precancer states and CRC
remains to be defined. Ultimately, targeted detection of CRC-associated CAGs may enhance CRC screening
(perhaps leveraging population-specific CAG-based models) and the development of microbiome-based CRC
prevention tools.

Nonetheless, our study and other related studies in this emerging area of research present an opportunity to
address a public health gap: the need for improved non-invasive CRC screening. The microbiome may enable
detection of precancerous lesions, which would be great value in terms of cancer prevention, as demonstrated
through our experience with colonoscopy. The finding that microbiome-induced precancerous changes may
precede adenoma development and may not be visually perceptible opens up prospects for even earlier screen-
ing. One explanation for the apparently significant effects of our microbiomes on our health is that our resident
microbes are always with us, and their biological effects, even if modest in size, may accumulate over a lifetime
of exposure. This ‘area under the curve’ of microbiome-induced effects may shape risk of developing CRC and
other cancers, a prospect that is both daunting and brimming with opportunity.

Data availability
Bacterial shotgun sequencing datasets and single-cell sequencing datasets have been deposited in the NCBI
Sequence Read Archives (PRINA1157403 and PRJNA1158762, respectively).
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