Table 2 Subject-specific classification accuracy (in percentage %) and Kappa of state-of-the-art algorithms on the BCI IV-2a dataset.

From: CTNet: a convolutional transformer network for EEG-based motor imagery classification

 

A01

A02

A03

A04

A05

A06

A07

A08

A09

Average ± Std

p-value

Kappa

ShallowConvNet+ 27

82.64

55.21

92.01

74.31

72.92

59.72

81.60

83.33

79.51

75.69 ± 11.76

0.0020**

0.6759

DeepConvNet+ 27

82.29

44.79

90.63

76.04

77.43

68.06

92.01

83.33

85.42

77.78 ± 14.42

0.1934

0.7037

EEGNet+ 28

88.19

56.94

93.06

71.18

70.49

62.85

87.15

82.64

84.03

77.39 ± 12.47

0.0059**

0.6986

TSF-STAN37

88.3

81.7

92.2

77.6

63.3

67.5

90.0

95.0

91.7

83.0 ± 11.4

0.7695

0.765

Conformer+ 53

85.07

48.96

91.32

78.47

75.00

65.28

87.85

87.15

79.86

77.66 ± 13.35

0.0742

0.7022

MI-CAT24

90.62

54.51

91.32

72.57

63.19

62.85

87.15

85.07

84.03

76.81 ± 13.80

0.0273*

0.692

CTNet (Proposed)

90.97

73.61

96.53

84.72

77.08

64.24

86.11

84.38

85.07

82.52 ± 9.61

-

0.7670

  1. +Reimplemented.
  2. The bold font highlights the best result among the different methods.