Table 5 Cross-subject classification accuracy (in percentage %) and Kappa of state-of-the-art algorithms on the BCI IV-2b dataset.

From: CTNet: a convolutional transformer network for EEG-based motor imagery classification

 

B01

B02

B03

B04

B05

B06

B07

B08

B09

Average ± Std

Kappa

ShallowConvNet+ 27

74.03

63.53

59.72

82.84

82.43

80.97

74.86

72.37

77.78

74.28 ± 8.13

0.4856

DeepConvNet+ 27

74.03

65.15

63.47

80.81

82.70

74.86

81.39

76.32

77.92

75.18 ± 6.84

0.5037

EEGNet+ 28

74.44

69.26

62.36

80.41

83.24

75.56

79.86

73.55

77.50

75.13 ± 6.35

0.5026

Conformer+ 53

71.39

62.35

65.28

82.97

80.41

69.31

75.00

76.32

78.61

73.52 ± 6.96

0.4703

CTNet (Proposed)

76.25

71.03

66.39

81.76

83.11

77.22

79.17

73.56

77.92

76.27 ± 5.26

0.5252

  1. +Reimplemented.
  2. The bold font highlights the best result among the different methods.