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Higgs decay and CP violation phase 
in the CPV TNMSSM
Ning‑Yu Zhu *, Hai‑Xiang Chen  & Huai‑Cong Hu 

In this study, we calculate the Higgs mass matrix and explore the limitations of the minimum 
conditions of the scalar potential on parameter degrees of freedom in the CP violation TNMSSM. We 
discuss the contributions of some parameters to Higgs mass, and their impact on the strength of Higgs 
decay signals in different decay channels h → γ γ , h → VV  (V = W ,Z) and h → f f̄  (f = b, c, τ).
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The Standard Model (SM) of electroweak and strong interactions of elementary particles has achieved great 
success in the last century1,2. The Higgs particle was observed in 2012, which means that all particles in the 
SM have been discovered3,4. On the other hand, the SM also has some disadvantages, for example, its inability 
to explain neutrino oscillations5,6 and the asymmetry of matter and antimatter in the universe, as well as can 
not provide the candidates for dark matter. Therefore, some extended models of SM have been proposed in an 
attempt to explain these issues.

The Minimal Supersymmetric Standard Model (MSSM) is a well-known new physics model7, which has 
been extensively studied by physicists in the past few decades. However, the MSSM also has some unexplained 
problems8, such as the hierarchical and µ term problems, and physicists have proposed some extended models of 
the MSSM. The extension of the MSSM by addition a gauge singlet which is coupled to Higgs doublets (NMSSM) 
has been proposed to solve the µ term problem9. The TNMSSM introduce a forbidden bare µ term, and an 
effective µ term is generated by the vacuum expectation value of the singlet. However, all the couplings in the 
NMSSM being perturbative up to the GUT scale also does not polish up the little gauge hierarchy problem10–15. 
Fortunately, the next-to-minimal supersymmetric standard model with triplets (TNMSSM) is proposed by Kaus-
tubh Agashe et al. , which combines the advantages of NMSSM and TMSSM16,17. Compared with the MSSM, the 
TNMSSM introduces a gauge singlet and two SU(2)L triplets with hypercharge Y = 0 , which can validly solve 
the little gauge hierarchy and µ term problems in MSSM. In addition, the TNMSSM can give neutrinos a small 
mass by introducing Majorana mass term without the need to introduce right-handed neutrinos16,18, which is 
cannot in the MSSM and NMSSM.

The violation of CP was first observed in neutral kaon decay experiments and strongly validated in B-meson 
decay experiments19,20. In addition to particle physics, CP violation (CPV) also provides a possible explanation 
for the asymmetry of matter and antimatter in the universe21. The Higgs interactions play an important role in 
mediating CPV, for example, CP is broken explicitly in the SM by complex Yukawa couplings of the Higgs boson 
to quarks. There are literatures indicating, in models that expand the Higgs sector, such as SUSY and MSSM, CP 
symmetries of those theories are broken spontaneously22,23.

The existence of Higgs boson has been confirmed, but further research is needed on its properties. In 
this paper, we consider the contributions of one-loop effective potential24 and two-loop leading-log radiative 
correction25,26 to Higgs mass, and calculate the mass matrix of Higgs boson in CPV TNMSSM and explore the 
reduction of parameter degrees of freedom by the minimum conditions of the scalar potential in Chapter II . The 
concrete theoretical expressions of Higgs decay are presented in Chapter III . It is found in the calculation that 
CPV appears in the tree level Higgs mass matrix in the CPV TNMSSM, which is absent in MSSM27. In numerical 
analysis, we find that the appearance of CPV in the tree level Higgs mass matrix has negative contributions to 
Higgs boson mass and greatly limits the range of parameter selection. Then we conduct a numerical analysis of 
the signal strength of Higgs decay in different decay channels in Chapter IV . We observe the effects of tanβ , M� 
(modulus of � ), tanβ ′ and M �T (modulus of �T ) on signal strengths when �T and χd were selected as different 
phase angles and M χd (modulus of M χd ) and ReAu (real part of Au ) were selected as different values. We note that 
because triplets have no coupling with fermions in the Lagrangian , the signal strengths of h → f f̄  (f = b, c, τ) are 
almost unaffected when the phase angle of �T changes. In addition, in Chapter IV , we also calculate the electric 
dipole moments of neutrons and electrons, the contribution of doubly charged particles to Higgs decay, and the 
mass spectrum of doubly charged particles. In Chapter V , we discuss the results of the article.
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THE Higgs sector in the CPV TNMSSM
The TNMSSM
Some literature has investigated B meson rare decays28, Higgs boson decays h → MZ29, and transition mag-
netic moment of Majorana neutrinos18 in the TNMSSM. These studies indicate that the TNMSSM is capable of 
making good predictions for B meson decay and neutrino transition magnetic moment, and provides valuable 
information for the experimental exploration of rare Higgs decays. In addition, M.A. Ouahid et al.studied the 
phenomenology of neutrinos and doubly charged Higgs in flavored-TNMSSM30.

Compared to the MSSM, the TNMSSM has an additional gauge singlet S and two SU(2)L triplets T and T̄ . 
The superpotential of Higgs sector and Yukawa sector in TNMSSM are given as follows, respectively

 where � , �T , κ , χu and χd are dimensionless. The field contents of the TNMSSM are given in Table 1. The singlet 
S, doublets Hu , Hd and triplets T, T̄ are given respectively by

where vu, vd , vs , vt and vT̄ are vacuum expectation value (VEV) of singlet S, doublets Hu and Hd , triplets T and T̄ , 
respectively. Traditionally, tanβ and tanβ ′ are can defined by tanβ ≡ vu/vd and tanβ ′ ≡ vt/vt̄ . There is a relation-
ship between VEV in SM and VEV in TNMSSM16
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The potential and Higgs mass
In the supersymmetry theory, scalar supersymmetry potentials are given in the following way

F and D are two auxiliary functions

In the MS scheme, the CPV effective potential is determined by27

V0 is the tree level potential, V1 is the one-loop level effective potential with24

where mq is the q quark mass, and mq̃ is the q̃ squark mass and Q is the renormalization scale at TeV order.The 
mass matrix of squarks is given by
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U |Ũ |2 +m2

D|D̃|2

+ m2
L|L̃|2 +m2
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The elements of Higgs mass matrix can be calculated by the following formula on the basis 
( φd ,φu,φs ,φt ,φt̄ , ad , au, as, at , at̄)

It is found in the calculation that CPV appears in the tree level Higgs mass matrix in the CPV TNMSSM, namely 
mhij andmhji  = 0(φi = φd ,φu,φs ,φt ,φt̄ and φj = ad , au, as , at , at̄) , which is absent in MSSM. In this paper, we 
consider the contributions of quarks (t,b,c) and squarks (stop, sbottom, scharm) to Higgs mass.

In addition, the Goldstone can be analytically obtained through Z†MhZ , where Z is the unitary matrix 
defined as

Moreover, we also consider the contribution of two-loop radiative correction to the Higgs boson mass25,26,31
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Here we provide the mass matrices of doubly charged particles in TNMSSM. The mass matrix of the doubly 
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CP violation and phase angle
Consider AeiθABeiθBCeiθC is a term in Lagrangian, A, B, C are parameters or fields in Laragian, because 
ABCei(θA+θB+θC) = AeiθABeiθBCeiθC , we can absorb all the phase angles of the fields into the coupling coefficient 
through redefining eiθi = eiθAeiθB eiθC . Because all phase angles are undetermined, it is sufficient and reasonable to 
only add phase angles to the coupling coefficient. In this paper, we use MAie

iθi to represent complex parameters 
Ai , MAi is modulus of complex parameters Ai.

The total tadpoles are given by:

where

T0
φi

 and T1
φi

 are given in the appendix A. Due to the requirement of vanishing tadpole equations, the degrees of 
freedom of the parameters can be reduced, i.e. m2

i  ( i = Hu,Hd , S,T and T̄ ) disappear in the main diagonal ele-
ments of the Higgs mass matrix, and the imaginary parts of the five parameters Ai ( Ai=Au , Ad , Ak , AT , Ahu ) will 
be reduced. The reduced imaginary parts of those parameters are present in the appendix A (A1–A5).

THE 125 Higgs decays
The Higgs boson is a mixed state of CP-even and CP-odd components in CPV theory, differentiate from the 
SM Higgs boson, both of the two final states appear and could be distinguished from each other by detecting 
photon polarization32.

The Higgs are mainly produced by gluon pairs fusion in LHC experiments33,34. The one loop diagrams with 
virtual top quarks have the most significant contribution to the leading order (LO). In new physics (NP), one-
loop diagrams containing virtual squarks also contribute to the LO. In this section, we use H to denote CP-even 
Higgs and A to denote CP-odd Higgs. The decay widths of CP-even Higgs to gluon pairs H → gg and CP-odd 
Higgs to gluon pairs A → gg are given respectively by35–40:

The LO contributions to the decay Higgs to diphoton come from the one-loop diagrams. In the NP, all of the 
fermions, W boson and these supersymmetric partners contribute to Higgs to diphoton decay. The partial widths 
of CP-even Higgs and CP-odd Higgs bosons decay into diphoton are given by33,41–46:
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where xi = m2
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0 (x) and g(x) are given by47

The partial widths of CP-even Higgs bosons decay into vector boson pairs H → VV  (V = W ,Z) are given by48–55:
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In the Born approximation, the partial decay widths of CP-even and CP-odd Higgs bosons decay into fermion 
pairs are given by35,49:

In the CPV TNMSSM, the concrete expressions for gHff  , g
Hf̃ f̃

 , gHH+H− , gHH++H−− , gHχ+χ− , gHχ++χ−− , gHVV , 
gAff  , gAχ+χ− and gAχ++χ−− appeared in Eqs. (6–9, 11–14) are given in the appendix B.

The signal strengths for the Higgs decay channels are56

The Higgs production cross sections can be simplified through

the ratios of the signal strengths from the Higgs decay channels can be reduced as

where ŴNP = 
∑

f  ŴNP(h → f f̄  ) + 
∑

V ŴNP(h →VV)  + ŴNP(h → gg ) + ŴNP(h → γ γ ), represents the NP total decay 
width of physical Higgs.

Numerical analysis
We study the mass and decay of the lightest Higgs boson h0 in CPV TNMSSM in this section. After considering 
the experimental limitations, the scalar lepton masses larger than 700 GeV, and chargino masses larger than 1100 
GeV57, the parameters in CPV TNMSSM were selected as

where ReAi are the real parts of Ai ( Ai = Au , Ad , Ak , AT , Ahu ), M Aj are the modulus of Aj ( Aj = �T , k, χu , χd , 
A), and θAk

 are the CP phase of Ak ( Ak = � , k, χu , A), respectively.
Due to the CP violation appears in the tree-level Higgs mass matrix which leads to a negative contribution 

to Higgs mass and the value of vs is large, the selection ranges of phase angles for � , k and A are strictly limited.
From the superpotential equations (1) and (2), it can be simply inferred that due to the vacuum expectation 

value vt and vt̄ are very small compared to the vacuum expectation value vu , vd and vs , the parameters that have 
no coupling with S, Hu and Hd are not sensitive to the influence of higgs mass and decay signal strengths. Moreo-
ver, because of the value of vs is very large, some parameters such as χu , k, A and Ak are too sensitive to higgs 
mass, resulting in the inability to observe those impacts on the decay signal strengths within suitable parameter 
ranges. After considering the above factors, we select the parameters that are sensitive to signal strengths and 
analyse the results.

(19)ŴNP(H → f f̄ ) =
NcGFm

2
f mH

4
√
2π

∣∣gHff
∣∣2β3

f ,

(20)

ŴNP(A → f f̄ ) =
NcGFm

2
f mA

4
√
2π

∣∣gAff
∣∣2βf ,

βf =
(
1−

4m2
f

m2
H ,A

) 1
2

(21)

µ
ggF
γ γ ,VV =

σNP(ggF)

σSM(ggF)

BRNP(h → γ γ ,VV)

BRSM(h → γ γ ,VV)
, (V = W ,Z)

µVBF
f f̄

=
σNP(VBF)

σSM(VBF)

BRNP(h → f f̄ )

BRSM(h → f f̄ )
, (f = b, c, τ)

σNP(ggF)

σSM(ggF)
≈

ŴNP(h → gg)

ŴSM(h → gg)
,

σNP(VBF)

σSM(VBF)
≈

ŴNP(h → VV)

ŴSM(h → VV)
,

(22)

µ
ggF
γ γ =

ŴSM

ŴNP

ŴNP(h → gg)

ŴSM(h → gg)

ŴNP(h → γ γ )

ŴSM(h → γ γ )

µ
ggF
VV =

ŴSM

ŴNP

ŴNP(h → gg)

ŴSM(h → gg)

ŴNP(h → VV)

ŴSM(h → VV)

µVBF
f f̄

=
ŴSM

ŴNP

ŴNP(h → VV)

ŴSM(h → VV)

ŴNP(h → f f̄ )

ŴSM(h → f f̄ )
,

(23)

vs = 1 TeV, M1 = 1 TeV, M2 = 1 TeV,

Q = 1 TeV, Mk = 0.9, Mχu = 0.3,

MA = 0.8 TeV, θ� = 0.02, θk = 0.05,

θχu = π/3, θA = 0.01, ReAd = 0.5 TeV,

ReAk = −0.5 TeV, ReAT = 0.5 TeV,

Ahd = Ahl = ReAhu = 0.2 TeV,

m2
Q = m2

ū = m2
d̄
= m2

L = m2
ē = 1.8 TeV2.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20542  | https://doi.org/10.1038/s41598-024-71222-8

www.nature.com/scientificreports/

We adopt the parameters as follow

We explore the effects of these parameters on the Higgs mass and consider the limitations of experiments on 
Higgs mass, further explore their effects on Higgs decay signal strengths. In Figs. 1, 3 and 5, we adopt tanβ ′ = 1.5, 
M �T = 0.9, M χd = 0.8 and ReAu = − 500, in Figs. 2, 4 and 6, we adopt tanβ = 10, θ�T = π/6, M �  = 0.4 and θχd  = 0.8.

In Fig. 1a and b, we select M � = 0.4, θχd = π/3 when observing the effects of tanβ and θ�T on h0 mass, select 
tanβ = 10, θ�T = π/6 when observing the effects of M� and θχd on h0 mass. In Fig. 2a and b, we select M �T = 
0.9, ReAu = −500 when observing the effects of tanβ ′ and M χd on h0 mass, select tanβ ′ = 1.5, M χd = 0.8 when 
observing the effects of M�T and ReAu on h0 mass.

We take the parameter ranges to accept 124 GeV ≤ mh0 ≤ 126.5 GeV and study the impacts of these two 
sets of parameters on signal strengths.After considering the experimental data of Higgs mass, these parameter 
spaces are further limited

We analyse signal strengths within the new parameter ranges.
In addition, the selection of complex parameters, especially the phase angle, is strongly limited by the elec-

tric dipole moments (EDM) of electrons and neutrons. To further verify the rationality of these parameters, we 
calculated the electric dipole moments of electrons and neutrons using some unique parameters of TNMSSM. 
These results are presented in Figs. 3 and 4.

The effective Lagrangian for spin-12 particles EDMs can be written as

Similarly, the effective Lagrangian for spin-12 particles EDMs can be written as

(24)

6 ≤ tanβ ≤ 50, 0.2 ≤ M� ≤ 0.6,

0.3 ≤ tanβ ′ ≤ 6, 0.35 ≤ M�T ≤ 1,

θ�T = 0, π/4, π/3 and π/2,

θχd = 0, π/3, π/2, π ,

Mχd = 0.5, 0.6, 0.7, 0.8,

ReAu = −400, −500, −600, −700,

(25)
8 ≤ tanβ ≤ 50, 0.35 ≤ M� ≤ 0.55,

0.5 ≤ tanβ ′ ≤ 5, 0.45 ≤ M�T ≤ 0.8,

L
EDM
I = −

i

2
df ψ̄σµνγ5ψFµν

L
CEDM
I = −

i

2
d̃Cq q̄σµνγ5T

aqGµνa.

Fig. 1.   (a) The variation of the mass of h0 with tanβ when θ�T is selected as different phase angles. (b) The 
variation of the mass of h0 with M � when θχd is selected as different phase angles.
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The concrete formulas of EDMs and CEDMs can be seen in58–62. The research by T.Ibrahim et al. shows that 
the main factors affecting fermion EDM are the phase of the fermion field , vector Superfields, Higgs field, and 
the coupling parameters between Higgs fields58. Due to the fact that this article only considers the phase of 
parameters related to Higgs decay, and � and χu have already been selected, only the phase of χd and �T needs 
to be considered.

The experimental limitations for neutron and electron EDM are dn < 0.18× 1025 and de < 0.11× 1028 , 
respectively, which are denoted by blue dashed lines in the Figs. 3 and 4. Due to the influence of � and χu not 
being equal to 0, the EDM of electrons and neutrons is not equal to 0 when χd and �T are equal to 0. When �T 
changes, the EDM of electrons and neutrons does not change. This is because singlet and triplets are not coupled 
with fermions. The calculation results are in good agreement with experimental limits, leading us to believe that 
these parameters are appropriate.

When different phase angles for �T and χd are selected, µggF
γ γ  in Fig. 5a and b first increases and then decreases, 

and reaches its maximum at tanβ = 12 and M� = 0.47, µggF
VV in Fig. 5a and d first increases and then decreases, and 

reaches its maximum at tanβ = 14 and M� = 0.46, respectively. According to the datas provided in PDG57, µexp
γ γ  = 

1.10 ± 0.0763–66, µexp
WW = 1.19 ± 0.1265,66, µexp

ZZ  = 1.01 ± 0.0765,67,68, the maximum error between the experimental 
data and the theoretical prediction of µγγ is about 1 σ and of µWW is less than 1 σ and of µZZ is approaching 2.5σ.

When different vlaues for M χd and ReAu are selected, µggF
γ γ  gradually increasing in Fig. 6a and gradually 

decreasing in Fig. 6b, µggF
VV  gradually increasing in Fig. 6c and gradually decreasing in Fig. 6d, respectively. 

Because the value of vd is relatively small compared to vu when tanβ=10, the effects of M χd on signal strengths are 
insensitive, so that µggF

γ γ  and µggF
VV remain almost unchange when M χd changes. According to the datas provided 

in PDG, the maximum error between the experimental data and the theoretical prediction of µγγ is about 1.1σ 
and of µWW is less than 0.8σ and of µZZ is approaching 2.4σ.

When different phase angles for �T and χd are selected, µVBF
bb  and µVBF

ττ  in Fig. 7a and b gradually decreasing, 
µVBF
cc  in Fig. 7c and d gradually increasing. According to the datas provided in PDG57, µexp

bb  = 0.98 ± 0.1265,66,69,70, 
µ
exp
cc  = 37 ± 2071,72, and µexp

ττ  = 1.15+0.16
−0.15

65,66,73, the maximum error between the experimental data and the theo-
retical prediction of µbb is about 1.6σ , of µcc is less than 1.5σ and of µττ is much less than 1 σ . When different 
phase angles of �T are selected, µVBF

bb  , µVBF
ττ and µVBF

cc  remain almost unchanged, because the Higgs singlet and 
triplets are uncoupled with fermions in the Lagrangian.

When different vlaues for M χd and ReAu are selected, µggF
γ γ  almost unchange in Fig. 8a and b, µggF

VV almost 
unchange in Fig. 8d and only slightly reduce in Fig. 8c. This meets our expectation because these parameters are 
uncoupled with fermions in the Lagrangian.

We calculated ŴNP(h → γ γ ) after ignoring the contribution of doubly charged particles Ŵno doubly
NP (h → γ γ ) 

and compared it with ŴNP(h → γ γ ) to quantify the contribution of two charged particles to the decay h → γ γ

.These results are presented in Fig. 9. The Cdoubly in Fig. 9 is defined by

Fig. 2.   (a) The variation of the mass of h0 with tanβ ′ when M χd is selected as different values. (b) The variation 
of the mass of h0 with M �T when ReAu is selected as different values.
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Due to the large mass of the doubly charged Higgs, its contribution to the decay width is small. For the doubly 
charged chargino, because the vacuum expectation values of triplets are very small, its contribution to the decay 
width is also small.

We calculate the masses of the lightest doubly charged Higgs boson h++ and doubly charged chargino χ++ , 
and compared them with experimental results. The analytical expressions for the mass of doubly charged Higgs 
boson and doubly charged chargino are given in Eqs. (9) and (10), and the numerical results are shown in 
Figs. 10 and 11.

Cdoubly =
ŴNP(h → γ γ )− Ŵ

no doubly
NP (h → γ γ )

ŴNP(h → γ γ )
.

Fig. 3.   (a) The variation of neutron EDM with θχd and θ�T . (b) The variation of neutron EDM with M � when 
θ�T is selected as different values. (c) the variation of neutron EDM with tanβ ′ when M χd is selected as different 
values. (d) The variation of neutron EDM with M �T when ReAu is selected as different values.
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The limitation of the experiment is that mh++ > 1080 GeV74–76, we mark it with a blue dashed line in the Fig. 10. 
From the Eq. (10), it can be seen that the mass of mχ++ depends only on �T.

Conclusion
As an extended model of MSSM, the TNMSSM introduces a new gauge singlet S and two SU(2)L triplets T, T̄ . 
The neutral parts of Higgs singlet, two Higgs doublets(Hd and Hu ) and two Higgs singlets mix together, which 
constitute a 10× 10 mass squared matrix of Higgs boson after considering CP violation. After considering the 
contributions of one-loop effective potential and two-loop radiative correction, we obtain complete Higgs mass 
matrix and the lightest Higgs h0 with a mass mh0 near 125 GeV in Chapter II. We show concrete theoretical 
expressions of the Higgs decay in Chapter III, and provide the concrete expressions of gHff  , g

Hf̃ f̃
 , gHH+H− , 

gHH++H−− , gHχ+χ− , gHχ++χ−− , gHVV , gAff  , gAχ+χ− and gAχ++χ−− in the appendix B.

Fig. 4.   (a) The variation of electron EDM with θχd and θ�T . (b) The variation of electron EDM with M � when 
θ�T is selected as different values. (c) The variation of electron EDM with tanβ ′ when M χd is selected as different 
values. (d) The variation of electron EDM with M �T when ReAu is selected as different values.
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We explore the limitations of the minimum conditions of the scalar potential on the degrees of freedom of 
parameters and present the relevant results in the appendix A. After considing the minimum conditions of the 
scalar potential in the CPV TNMSSM model, we reduce five parameters m2

i  ( i = Hu , Hd , S, T and T̄ ) and the 
imaginary parts of the five parameters Ai (A i  = Au , Ad , Ak , AT , Ahu ) . In Chapter IV, after considering limitations 
of the minimum conditions of the scalar potential and Higgs mass, we obtain a set of parameters and calculate the 
signal strengths of Higgs decay in different decay channels h → γ γ , h → VV (V = W ,Z) and h → f f̄  (f = b, c, τ) 
, and compare them with experimental results in PDG, where µVBF

γ γ  , µVBF
WW and µVBF

ττ  match the experimental data 
very well. Compared to the SM, the theoretical calculations of new physics better conform to the experimental 
results. In addition, the calculation result of the signal strengths µVBF

ff  of h → f f̄  are almost the same when θ�T 
takes different values, we analyze that this is because the triplets are uncoupled with fermions in the Lagrangian. 

Fig. 5.   (a, b) The variation of the signal strength µggF
γ γ  and µggF

VV with tanβ when θ�T is selected as different phase 
angles. (c, d) The variation of the signal strength µggF

γ γ  and µggF
VV with M � when θχd is selected as different phase 

angles.
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Moreover, we explore the effects of some parameters that beyond the MSSM on Higgs mass and decay signal 
strengths, such as tanβ ′ , θχd , θ�T , M χd and M �T . From the Chapter IV, it can be seen that θχd and M �T are sensi-
tive to Higgs decay signal strengths. In addition, in Chapter IV , we calculate the EDM of electrons and neutrons, 
as well as the mass spectrum of doubly charged particles, which well meet the experimental limitations. We also 
discuss the contribution of doubly charged particles to Higgs decay in the “Numerical analysis” Section. Due to 
the large mass of h++ and small vt , the contribution of doubly charged particles to Higgs decay is relatively small. 
We look forward to more experimental measurements of these decays in the future, which will be beneficial for 
understanding more about the properties of Higgs boson.

Fig. 6.   (a, b) The variation of the signal strength µggF
γ γ  and µggF

VV with tanβ ′ when M χd is selected as different 
values. (c, d) The variation of the signal strength µggF

γ γ  and µggF
VV with M �T when ReAu is selected as different 

values.
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Fig. 7.   (a, b) The variation of the signal strength µVBF
bb  , µVBF

ττ  and µVBF
cc  with tanβ when θ�T is selected as 

different phase angles. (c, d) The variation of the signal strength µVBF
bb  , µVBF

ττ  and µVBF
cc  with M � when θχd is 

selected as different phase angles.
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Fig. 8.   (a, b) The variation of the signal strength µVBF
bb  , µVBF

ττ  and µVBF
cc  with tanβ ′ when M χd is selected as 

different values. (c, d) The variation of the signal strength µVBF
bb  , µVBF

ττ  and µVBF
cc  with M �T when ReAu is selected 

as different values.
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Fig. 9.   (a) The variation of Cdoubly with tanβ when θ�T is selected as different phase angles. (b) The variation of 
Cdoubly with M � when θχd is selected as different phase angles. (c) The variation of Cdoubly with tanβ ′ when M χd 
is selected as different values. (d) The variation of Cdoubly with M �T when ReAu is selected as different values.
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Fig. 10.   (a) The variation of the mass of h++ with tanβ when θ�T is selected as different phase angles. (b) The 
variation of the mass of h++ with M � when θχd is selected as different phase angles. (c) The variation of the mass 
of h++ with tanβ ′ when M χd is selected as different values. (d) The variation of the mass of h++ with M �T when 
ReAu is selected as different values.



18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20542  | https://doi.org/10.1038/s41598-024-71222-8

www.nature.com/scientificreports/

Data availibility
All data generated or analysed during this study are included in this published article.
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