Table 4 AR outcome of the FFODL-VDCAI approach with other models on the Stanford dataset.

From: Flying foxes optimization with reinforcement learning for vehicle detection in UAV imagery

Stanford dataset

Methodology

\(AR^{max = 1}\)

\(AR^{max = 10}\)

\(AR^{max = 100}\)

Faster R-CNN(Inceptionv2)

15.10

17.10

17.10

Faster R-CNN(Resnet50)

16.40

18.60

18.60

YOLO-v3 (320 × 320)

9.00

9.10

9.10

YOLO-v4 (320 × 320)

14.70

14.70

14.70

FFODL-VDCAI

17.45

20.01

19.95