Table 7 AP outcome of the FFODL-VDCAI approach with other models on the PSU dataset.

From: Flying foxes optimization with reinforcement learning for vehicle detection in UAV imagery

Average precision by object size (PSU dataset)

Car size

Small

Medium

Large

Faster R-CNN(Inceptionv2)

0.75

0.46

0.53

Faster R-CNN(Resnet50)

0.68

0.52

0.48

YOLO-v3 (320 × 320)

0.89

0.50

0.62

YOLO-v4 (320 × 320)

0.95

0.56

0.72

FFODL-VDCAI

0.98

0.74

0.82