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Modeling health outcomes of air 
pollution in the Middle East 
by using support vector machines 
and neural networks
Ayesha 1, Muhammad Noor‑ul‑Amin 2, Olayan Albalawi 3, Nadia Mushtaq 4, 
Emad E. Mahmoud 5, Uzma Yasmeen 1,6 & Muhammad Nabi 7*

This study investigates the impact of air pollution on health outcomes in Middle Eastern countries, a 
region facing severe environmental challenges. As such, these are important in an effort to add up to 
policy-level as well as interventional changes that can be put in practice in the area of public health. 
Numeration analysis and association with health parameters was carried out by using Analytical tools 
such as, AIR Data, ARIMA,ANN, SVM and Exponential smoothing. Amongst the models, Support 
Vector Machine came again on top, with high accuracy yielding Mean Absolute Percentage Error of 
approximately 1%. Mortality of Air pollution in Qat from the case of Mortality of Air Pollution in Qatar 
is 959 while Auto regressive Integrated Moving average is 11.096, Exponential Smoothing 9.892 and 
Artificial Neural Networks are the source of inspiration for the development of this paper 4.61. The 
above perceptions indicate that there is need to adapt modeling strategies depending on the context 
and establish that it is possible to implement ML models in public health planning basket. This paper 
publishes the methodological frameworks for the purpose of modeling and analysis of the EHDs 
and serves as policy prescription for the policy makers to intending to reduce the effects of air borne 
pollution on health.
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Middle East region there has been economic development and expansion of built up areas, as well as raised level 
of industrial activity and motorised traffic. While such developments have helped in the fight and growth of 
the regions development story the quality of air pollution has over time threatened the health of the people. It 
becomes easier to deal with health risks posed by pollution, if the relation between air quality and human welfare 
is properly understood in the Middle East. This research paper aims at undertaking the following exploratory 
research question in an attempt to establish the correlation between various types of pollution and public health 
in the Middle East region. Specifically, it intend to forecast and analyse the impact of pollution in relation to 
health drawing attention to the critical decade of 2020–2030. The research explores the complex aspects of this 
issue by examining various pollutants, their origins, and the socio-economic factors that affect population vulner-
ability in the region. Pollution, in this context, refers to the emission of substances or energy into the atmosphere, 
leading to harmful impacts on the environment, including risks to human health, damage to ecosystems, and 
interference with environmental functions and other legitimate uses. This definition is provided by the European 
Environmental Agency1,2. Land pollution, as defined by the Texas Disposal System, pertains to the degradation 
of the surfaces of the Earth’s land, encompassing the above ground levels and underground level3. The con-
tamination of water sources by substances renders the water unsuitable for various activities such as cooking, 
drinking, swimming, cleaning, and more. This information is provided by Harvard T.H. Chan School of Public 
Health4. Air pollution is a perilous form of environmental contamination. As outlined by the National Institute 
of Environmental Health Sciences, it is described as a combination of harmful substances originating from both 
human-made and natural sources (National Institute of Environmental Health Science, NIH5.
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Nature releases hazardous substances into the air, including gases produced from the decay of organic matter 
in soils, gases and ashes from volcanic explosions, and fumes from wildfires, often ignited by human activities. 
This information is sourced from the National Institute of Health Sciences6.

Ambient Particulate Matter Pollution, abbreviated as PMP, comprises specific solid and liquid particles present 
in the air, including dirt, soot, smoke, and dust. These particles do not originate from a single source but rather 
form a mixture of diverse particles. They vary in composition, size, and shape, collectively found in the air. HAP 
is produced through the ignition of household fuels, resulting in indoor air pollution and adding to the overall 
burden of outdoor air pollution. This insight is provided by the World Health Organization7. As stated by the 
“Pan American Health Organization (PAHO)”, the ineffective burning of fuels stands out as one of the primary 
factors contributing to Disability-Adjusted Life Years (DALYs) and fatalities worldwide, Pan American Health 
Organization8.Ozone, a gas composed of three oxygen atoms, exists naturally and is also produced through 
human activities. It is highly reactive and is found in both the troposphere and stratosphere, with the majority 
located in the stratosphere. The upper stratosphere contains a protective layer of ozone that shields the Earth from 
harmful ultraviolet radiations emitted by the sun. An atmosphere contaminated by pollution poses a threat to 
everyone, with infants being particularly vulnerable. The number of infant deaths resulting from air pollution is 
staggering, contributing significantly to global child mortality rates annually. This issue is especially prominent 
in underdeveloped and developing countries. The primary culprits behind these life-threatening diseases are air 
pollution, whether indoors or outdoors. Notably, even in developed nations such as China, the toll of premature 
mortalities due to air pollution remains alarmingly high9. In this analysis, they assess the effectiveness of employ-
ing different models10. MLM has been useful to conduct in-depth studies on the suitability of various existing 
architectures for diverse forecasting tasks11. A comprehensive examination is conducted, examining all air pollut-
ant factors by correlating these elements from top to bottom12. The SARIMA model is employed to project future 
concentrations of PM2.5, anticipating an increase in the number of PM2.5 particles in the upcoming year. The 
forecast provides both the minimum and maximum predictions, ranging over 100 µg/m3. In previous literature, 
the Autoregressive Integrated Moving Average (ARIMA)model has been utilized to predict the prevalence of 
diseases due to its ability and ease in elucidating dataset13,16–18. Holt’s introduced Winter exponential smoothing 
(ES) that has found application in modeling and forecasting various issues, including but not limited to electric-
ity consumption 16.Artificial Neural Networks (ANN) were utilized to predict the daily cases of COVID-19 in 
various countries, including China, Iran, Italy, Japan, South Africa, Singapore, and the USA15. In forecasting 
the outbreak of COVID-19, Artificial Neural Networks (ANN) have been sparingly employed to predict death 
and recovery cases19. The study utilizes an ANN to accurately predict COVID-19 confirmed cases and deaths, 
demonstrating the efficacy of the ANN model in forecasting future trends and emphasizing the importance 
of stringent control measures to curb the pandemic’s spread20. ANN proved to be dependable in forecasting 
increases in timber prices, yet encountered challenges when faced with unforeseen surges. Research indicated 
their superiority over traditional methods, highlighting the necessity for enhancements, such as incorporating 
exogenous variables and optimizing model structures, to achieve more accurate predictions of timber prices21. 
The research, which conducted a comparison of statistical and machine learning models (ARIMA, SARIMA, 
NAR, LSTM) based on Mean Absolute Percentage Error (MAPE), demonstrated that, in general, open-loop 
models outperformed closed-loop ones, although exceptions were observed at specific stations. While there 
wasn’t a clear optimal method identified for open loops, machine learning techniques, particularly Long Short-
Term Memory (LSTM) and Neural Autoregression (NAR-NN), exhibited superior performance compared to 
statistical methods in closed-loop setups. The study underscored a notable correlation between MAPE and Rela-
tive Standard Deviation (RSD) for both loop types 22. The study utilized artificial neural networks for mortality 
forecasting in the Kurdistan Region, citing their superior predictive accuracy. It underscored the importance of 
data quality and recommended the adoption of the KRG-HIS program to enhance health data collection. The 
study highlighted that widespread implementation of such a system could add to better health planning and 
more accurate mortality forecasts23.

This study provides a complete comparative analysis of classical statistical models and advanced machine 
learning techniques for predicting air pollution levels and the health impacts linked with them. The study recog-
nizes the strengths and weaknesses of each approach by evaluating the performance of models such as ARIMA, 
ES, SVM, and ANN. This benchmarking is decisive for selecting the most appropriate model for specific forecast-
ing tasks. The outcomes offer valuable insights into model performance, practical guidance for model selection 
and support for informed decision-making in public health and policy. This study contributes to environmental 
health research by highlighting the potential of advanced machine learning techniques to improve predictive 
accuracy and reliability.

Data source and methodology
This research employed information sourced from “the Institute of Health Metrics and Evaluation GBD” web-
sites (1990–2019) focusing on eight Middle East Arab States: Syrian Arab Republic, Iraq, Kuwait, United Arab 
Emirates, Iran, Lebanon, Saudi Arabia, and Qatar.

The research employs the aforementioned dataset, covering the years 1990–2019 for Middle Eastern countries, 
consisting of 240 observations (eight countries with 30 values each). In applying machine learning techniques, 
80% of the data (1990–2013) was used for model training, while the remaining 20% (2013–2019) was reserved 
for model testing. Forecasting plots were created to visually represent the predicted values generated by the 
models. The Mean Absolute Percentage Error (MAPE) was utilized for model validation. Both traditional sta-
tistical methods and machine learning algorithms, including ARIMA, Exponential Smoothing (ES), Support 
Vector Machines (SVM), and Neural Networks (NN), were employed in constructing these forecasting models.
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ARIMA model
The ARIMA modeling approach with Box Jenkin Methodology offers the conventional framework for time series 
analysis. Its strengths lie in flexibility and automatic model selection through functions like auto.arima() in R 
and the interpretability of its components. The steps for ARIMA model are illustrated in Fig. 1.

The ARIMA is denoted as “ARIMA(p, d, q)”. The expression is as follows:

where, d : the integrated value,p : the order of autoregressive process, µ : mean,q : the order of moving average 
process,φ : the autoregressive operator, yt : the time series, ε : the random error, y′t : the first derivative of time 
series, θ:the moving average operator.

Exponential smoothing method
The Single Exponential Smoothing (ES) method was utilized to generate forecasts for a time series dataset, 
selected due to the absence of any seasonal patterns and the lack of a significant upward or downward trend in 
the data. This approach provides a way to estimate the current level of the time series using a single smoothing 
parameter, α, which determines the weight assigned to the most recent observation. The value of α varies between 
0 and 1. The method uses exponentially decreasing weights and also incorporates weights moving average; the 
calculation can be explained with the help of the following formula.

t  the time, st: c: the quantity of interest, yt: the target statistic, α: the smoothing factor, st − 1: the previous 
smoothed statistic. In the course of our analysis, we chose Holt’s Exponential Smoothing (ES) method because 
in the observed data samples no periodic relations were identified. The goal of employing Holt’s Exponential 
Smoothing in our analysis is to capture and understand the fundamental patterns in the data, ultimately lead-
ing to more precise predictions and better-informed decision-making:the time, st: the smoothed statistic, and 
α: the smoothing factor, st − 1: the previous smoothed statistic However, there is conflict in the data; therefore, 
in the current analysis, we opted for Holt’s Exponential Smoothing (ES) method since there was no evidence 
of a seasonality present in the data. The objective to apply Holt’s Exponential Smoothing as the method of our 
analysis will allow to unearth the underlying characteristics of the patterns and generate more accurate forecasts 
and effective decisions. The formula is expressed as: s1 = x1 and b1 = x1 − x0 for t > 1,

here, t :the time, α : the smoothing factor, bt : the trend best estimate at time t  , st−1 : the previous smoothed statistic, 
st : the smoothed statistic, β : the trend smoothing factor; 0 < β < 1

Support Vector Machine Regression
The ordinary Support Vector Machine (SVM) Regression is a popular technique in machine learning best used 
on time series data. SVMs are particularly good at working with large and complex data and have following 
characteristics; Time series data analysis. One of the significant advantages is that they do not tend to overfit 
because they are not influenced by outliers: they work with support vectors—the most significant points. This 
characteristic renders SVMs flexible and able to generalize if given new data, this boost up the accuracy in dif-
ferent applications.

SVR was implemented using a linear kernel which is defined as (K
(

x, x′
)

= xTx′). This choice of kernel 
allows for effective modeling of linear relationships within the data. Alternative kernels such as polynomial or 
radial basis function (RBF) could be employed for complex data. The regularization parameter (C) was set to 
1.0 that helps balance the trade-off between minimizing training error and maintaining model simplicity to 

(1)̂Y ′
t = µ+ φ1y

′
t−1

+ · · · + φpy
′
t−p + θ1εt−1 + · · · + θqε(t−q) + εt

(2)st = αxt + (1− α)st−1 = st−1 + α(xt − st−1)

(3)st = αxt + (1− α)(st−1 + bt−1)

(4)βt = β(st − st−1)+ (1− β)bt−1

Fig. 1.   Box–Jenkin methodology.
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prevent overfitting. The ε-insensitive loss function was applied to ignore errors within a margin ε. It focuses only 
on deviations that exceed this threshold. The SVR objective function is expressed to minimize the succeeding 
objective function:

subject to the constraints:

where ξi are slack variables, w represents the weight vector, (φ(xi)) denotes the kernel-transformed feature space, 
and b is the bias term. Predictions are obtained using the function:

where (αi) are the Lagrange multipliers from the training phase and (K(xi, x)) is the kernel function applied to 
the test input (x). Predictions were made on the test set to assess the model’s performance, and a forward-looking 
forecasting loop was incorporated. This loop generates predictions for future years based on the last three obser-
vations in the processed data. The Fig. 2 presented the structure of SVM model.

Artificial neural networks
Artificial neural networks is a sequence of algorithms inspired by the cognitive processes of the human brain. 
They are at the lead of this predictive revolution. These networks showcase an amazing ability to approximate 
all functions without requiring extensive knowledge about the data’s particulars. ANNs are extensively applied 
in time series forecasting. Neural networks play a crucial role in shaping the future of predictions and form the 
cornerstone of deep learning, a subfield of machine learning inspired by the intricate structure of the human 
brain. These networks as shown in figure three, take data through them, and are capable of independent training 
to detect particular patterns. This unique ability allows them to predict the output for the new similar data sets, 
emulate the brain’s multiple steps to analyze the information. The methodology adopted in the present study 
can be described in the following manner:

Data preprocessing
The first resolute within the undertaken methodology is the preliminary analysis of the time series to ensure their 
compatibility with the input data for the neural network model. Next to this, the data is first ordered chronologi-
cally to preserve the sequential structure which is required when undertaking time series analysis. This alters the 
range of the target variable in order that it may be normally distributed. This normalization process is performed 
through reducing the mean to zero and standard deviation to one of the data it is used to improve the stability 
and the performance of the neural network while training.

Dataset construction
They are expressed in the form of data for training a neural network based on the sequences of historical obser-
vation expanded in time. This involves a creation of tuples each of which has the past time steps as an input 
together with the value that has to be predicted on the next time step as an output. It is favorable to the model to 
use a sequence-based way to analyze the data, as temporal dependencies and temporal patterns can be learned 
using the data. Either the value of ‘t’ or the length of the input sequence is a dire parameter that determines the 
extent of the temporal information that the models can learn.

Objective:
1

2
|w|2 + C

∑n

i=1
ξi

yi −
(

wTφ(xi)+ b
)

≤ ǫ+ ξi

(

wTφ(xi)+ b
)

− yi ≤ ǫ+ ξi

f(x) =
∑n

i=1
αiK(xi, x)+ b

Fig. 2.   SVM model structure.
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Neural network architecture
Specifically, with the view of operationalizing the proposed forecasting model, a feedforward neural network has 
been used. The network includes multiple layers: The network can contain multiple levels, such as the system 
and the subjects filling posts in it.

A typical structure of a Neural Network (NN) design comprises of an input layer, hidden layers and an output 
layer. The input layer receives the input data and each of the neurons in this layer is in some way related to the 
feature present in the data. The latent layers are the layers that come in between the input and output layers and 
these neurons work on the inputs with applying weights, and sigmoid or tanh to put non-linearity in the model. 
All the results and decisions are given in the output layer and each neuron of the output layer contributes to the 
special possibility. While in forward propagation the network is in a position to make certain predictions and 
Sugimura, while using backpropagation, the weights of the network are in a position to be modified depending 
on the errors. The structure of the NN can be basic and have only the one hidden layer, or can be multilayer 
which consists from many layers in what is called Deep Learning Network with numerous layers or can have 
the adjusted layers as in convolutional or Recurrent NNs. Likewise, the structure of NN that Fig. 3 depicted was 
about organizing relation.

Model training and evaluation
Neural network learning occurs on a sample of the data referred as the training set while the performance is 
evaluated on another sample known as the testing set. To measure the accuracy of the created model, Perfor-
mance metrics named Mean Absolute Percentage Error (MAPE) is used. MAPE computes the level of prediction 
accuracy in proportional levels.

Forecasting and visualization
Having derived the model, it is then applied to make forecast for subsequent periods. In this method, the subse-
quent values are predicted from the data set and this is done repeatedly. These forecasts are linked with historical 
data to make visualization of the performance of the model possible. To illustrate the actual data and forecasted 
values, plots are always created. This in turn allows consideration of the predictive accuracy of the model.

It is a flexible and hierarchical structure that enables the training of the neural network for the patterns which 
exist in the time series data for robust predictions. Its ability to learn different and more accurate relationships 
within the data makes it more reliable for forecasting in the time series analysis. This has been made clear by the 
following representation of the Neural Network model;

where, yt−i =
(

yt−1, yt−2, . . . , yt−8

)

′ comprises a vector that includes past values of the series, and f represents 
ANN including 2 hidden nodes. The error system {ϵt} is presumed to exhibit homoscedasticity. ϵT + 1 is a 
stochastic draw from the error distribution at time T + 1, then y∗T+1 = f

(

yT+1

)

+ ǫ∗T+1 represents a potential 
realization from the predicted distribution. for yT+1.

yT+2 is the value of the series at time T + 2. f is a function that describes the relationship between the past values 
and the future values of the series. y∗T+1 ​ is a modified or transformed value of the series at time T + 1. ǫ∗T+1 ​ is an 
error term at time T + 1. This method allows a scholar to simulate upcoming sample paths iteratively. Through 
the repetitive simulation of these paths the researcher acquires an understanding of the distribution for all 
forthcoming values leveraging the information provided by the fitted ANN.

(5)yi = f
(

yt−i

)

+ ǫt

y∗T+1
= (y∗T+1

, yT , · · · , yT−6)
′

(6)yT+2 = f
(

y∗T+1

)

+ ǫ∗T+1.

Fig. 3.   Neural network nodes.
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Descriptive study
The time series analysis includes variables such as fatalities attributed to APM, HAP and AOP as well as DALYs 
associated with PMP, AOP and HAP. The descriptive overview of these variables for specific Middle East coun-
tries is presented in Table 1.

Table 1 offers a detailed overview of descriptive statistics for time-series variables related to pollution in vari-
ous Middle Eastern countries, including Mortalities and Disability-Adjusted Life Years (DALYs) associated with 
Particulate Matter Pollution (PMP), Ambient Outdoor Pollution (AOP), and Household Air Pollution (HAP). In 
the United Arab Emirates, the mean Mortality from PMP is 1418.2, with a standard deviation of 761.60, reflect-
ing moderate variability. The range of Mortality spans from a minimum of 587.9 to a maximum of 3252.0. In 
the Syrian Arab Republic, the mean Mortality resulting from HAP is 173.9, with a high standard deviation of 
1066.18, indicating significant variability. The Mortality range for AOP is between 125.8 and 229.9. In Iraq, the 
mean Mortality due to PMP is notably high at 20,391, with a substantial standard deviation of 2594.06, under-
scoring considerable variability. The Mortality for AOP ranges from a minimum of 111.3 to a maximum of 259.4. 
Kuwait exhibits a mean Mortality from PMP of 905.6, with a lower standard deviation of 319.68, indicating less 
variability. The range of Mortality in Kuwait extends from a minimum of 4.646 to a maximum of 24.666, show-
ing a narrower range compared to other countries. This analysis reveals distinctive patterns in mortality rates 
due to different types of pollution across the region. For the Islamic Republic of Iran, mean Mortality resulting 
from PMP stand at 35,029 that showcases a higher impact and the standard deviation of 3782.674 signifying a 
significant degree of variability. The minimum of 495.2 and maximum of 1794.2 highlights the broad spectrum 
of Mortality resulting from AOP.

In Lebanon, the mean values for Mortality resulting from PMP, AOP and HAP stand at 2636, 71.01 and 2692 
respectively. The corresponding DALYs means are 72,760, 1231.61 and 73,737. Lebanon shows relatively moder-
ate variability. Saudi Arabia, on the other hand, portrays higher mean values across all categories such as 13,036 
for Mortality resulting from PMP and 13,182 for Mortality resulting from HAP. The DALYs mean values are also 
substantial indicating a significant impact on public health. Saudi Arabia exhibits moderate to high variability 
especially in Mortality resulting from PMP and DALYs related to PMP and HAP. These findings collectively 
underscore the diverse impacts of different pollutants on public health, considering both Mortalities and DALYs.

Results
The examination of Mortalities and DALYs attributed to APM, HAP and AOP in Middle East countries that 
includes Syria, Iraq, Kuwait, United Arab Emirates, Iran, Lebanon, Saudi Arabia and Qatar encompassed the 
years 1990 to 2019. The study employed ARIMA, ES, SVM and Neural Network methodologies for forecasting 
purposes. The time series analysis focused on variables such as Mortalities due to APM, HAP and AOP as well 
as DALYs related to these three pollution categories. The selected countries’ data from 1990 to 2019 served as the 
foundation for employing these predicting techniques, providing a comprehensive understanding of the trends 
and potential future trajectories in pollution-related health outcomes in the Middle East.

Time series plot
Time series plots were generated for the period spanning 1990 to 2019 to explore data patterns.

The Fig. 4a,e Mortality resulting from PMP and HAP show a rising pattern in selected middle east countries. 
Figure 4b,f DALYs resulting from HAP and PMP show a rising pattern in selected middle east countries except 
for Iran where it shows u-shape pattern. Figure 4c,d mortalities and DALYs resulting from AOP show a rising 
pattern in selected middle east countries with Iran having higher mortalities and DALYs resulting from AOP 
and subtle increase from year 2005–2019.

Model summaries
ARIMA and Exponential Smoothing models were compared using the Bayesian Information Criterion (BIC). 
The results are presented in Table 2 for all the countries. In the context of time series analysis, this criterion helps 
in evaluating and selecting the model that best balances complexity and accuracy, ultimately guiding the choice 
of the most appropriate forecasting model for each country.

The ARIMA(p,d,q) model was selected from the Box-Jenkins Methodology. Model was selected based on 
smaller BIC score. ES performs better than ARIMA having lower BIC score (see Table 2). Across all countries 
and metrics, the ES model consistently achieves lower BIC scores compared to the ARIMA model. This indicates 
that, for the given data, the ES model provides a better fit than the ARIMA model for predicting both DALYs 
and mortalities. The analysis shows that the ES model is generally superior to the ARIMA model in predicting 
DALYs and mortalities across the examined Middle Eastern countries. This insight can guide future health data 
modeling and improve the accuracy of health outcome predictions, ultimately aiding in better health policy 
formulation and implementation.

Visualization for ARIMA
The forecasting charts for selected Middle East countries is shown below:

The projected values for next 10 years were visualized for ARIMA. In Fig. 5a,e depicting mortality resulting 
from PMP and HAP, an ascending trend is observed in Iraq, suggesting an increase in the number of mortalities 
each year for the forecasted period. Conversely, all other figures exhibit relatively constant forecasts, indicating 
a consistent number for the next 10 years. The Fig. 5c,d, illustrating mortalities and DALYs resulting from AOP, 
reveal an ascending trend in Kuwait and Iran, signaling a yearly increase in both Mortalities and DALYs resulting 
from AOP. In Fig. 5b,f representing DALYs resulting from HAP and PMP an upward trend is obvious across all 
countries that indicates a yearly rise in DALYs.
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Descriptive statistics
Mortality resulting 
from PMP

Mortality resulting 
from AOP

Mortality resulting 
from HAP

DALYs resulting from 
PMP

DALYs resulting from 
AOP

DALYs resulting 
from HAP

United Arab Emirates

 N 30 30 30 30 30 30

 Minimum 587.9 19.80 602.3 24,480 693.2 24,984

 1st quartile 862.6 31.92 885.9 33,543 1124.6 34,362

 Median 1130.8 50.11 1167.5 43,967 1763.3 45,255

 Mean 1418.2 66.64 1466.7 60,850 2552.0 62,706

 3rd quartile 1848.6 88.88 1912.1 83,317 3582.7 85,878

 Maximum 3252.0 149.10 3360.7 143,110 5844.7 147,250

 SD 761.60 41.63 791.31 36,055.51 1699.103 37,268

 Variance 580,036.9 1732.74 626,176.7 1.3e + 09 2,886,950 1,388,903,593

Syrian Arab Republic

 N 30 30 30 30 30 30

 Minimum 7347 125.8 7477 241,204 2662 244,039

 1st quartile 7899 146.1 8020 272,704 3171 275,430

 Median 8226 160.1 8336 300,410 3503 303,512

 Mean 8731 173.9 8866 293,142 3709 296,033

 3rd quartile 10,002 205.7 10,167 313,594 4351 316,877

 Maximum 10,491 229.9 10,671 332,398 4729 334,622

 SD 1066.18 33.3016 1088.798 26,553.14 643.9592 26,558.19

 Variance 1,136,739 1108.997 1,185,482 705,069,242 414,683.4 705,337,238

Iraq

 N 30 30 30 30 30 30

 Minimum 15,871 111.3 15,942 695,165 2203 696,552

 1st quartile 18,757 144.4 18,854 785,066 3043 787,828

 Median 19,920 171.9 20,038 795,065 3669 797,917

 Mean 20,391 175.7 20,511 787,507 3676 790,009

 3rd quartile 22,749 202.0 22,880 805,383 4231 807,483

 Maximum 25,442 259.4 25,626 816,359 5287 819,081

 SD 2594.06 40.1023 2622.97 28,603.58 842.836 29,004.17

 Variance 6,729,150 1608.195 6,879,957 818,164,584 710,372 841,242,151

Kuwait

 N 30 30 30 30 30 30

 Minimum 451.9 4.646 455 18,481 92.14 18,543

 1st quartile 639 8.038 644.4 23,348 147.31 23,446

 Median 881.1 11.151 888.3 30,816 196.36 30,943

 Mean 905.6 12.426 913.7 32,653 214.41 32,793

 3rd quartile 1155.6 16.449 1165.9 40,301 272.59 40,483

 Maximum 1526.8 24.666 1543.1 54,914 408.84 55,184

 SD 319.679 5.80753 323.344 10,876.24 89.4481 10,932.53

 Variance 102,194 33.7274 104,551 118,292,567 8000.97 119,520,250

Islamic Republic of Iran

 N 30 30 30 30 30 30

 Minimum 29,583 495.2 29,944 1,112,085 10,936 1,124,944

 1st quartile 32,049 597.08 32,490 1,142,753 12,674 1,158,268

 Median 34,626 44.7 35,246 1,164,769 16,790 1,177,956

 Mean 35,029 967.4 35,749 1,165,695 18,722 1,179,616

 3rd quartile 37,045 1206.8 37,930 1,174,518 22,798 1,189,787

 Maximum 41,839 1794.2 43,203 1,315,278 31,852 1,323,247

 SD 3782.674 423.769 4096.866 41,543.53 6849.109 40,474.5

 Variance 14,308,621 179,580 16,784,310 1,725,864,909 46,910,294 1,638,185,141

Lebanon

 N 30 30 30 30 30 30

 Minimum 2020 46.93 2057 60,937 905.4 61,729

 1st quartile 2119 52.36 2160 64,448 988.1 65,272

 Median 2436 72.48 2494 67,041 1259.5 67,912

 Mean 2636 71.01 2692 72,760 1231.61 73,737

Continued
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Visualization for exponential smoothing
The plots were designed for selected Middle East countries for forecasting purposes (2020–2030).

The projected values for the next ten years were visualized for ES. In Fig. 6a,e, depicting mortality resulting 
from PMP and HAP, an ascending trend is observed in Iraq, suggesting an increase in the number of mortalities 
each year for the forecasted period. Conversely, all other figures exhibit relatively constant forecasts, indicating 
a consistent number for the next 10 years. Figure 6c,d, illustrating mortalities and DALYs resulting from AOP, 
reveal an ascending trend in Kuwait and Iran, signaling a yearly increase in both Mortalities and DALYs resulting 
from AOP. In Fig. 6b,f showing DALYs resulting from HAP and PMP a rising trend is evident across all Middle 
East that shows a yearly rise in DALYs.

Visualization for SVM
The plots for eight Middle East countries, examining trends from 2020 to 2030, were generated using SVM pro-
jections. In Fig. 7a,b, which represent mortalities and DALYs resulting from PMP, an upward trend is observed 
in all countries. This indicates an increase in the number of mortalities and DALYs each year. However, in Syria 
and the Maldives, a downward trend suggests a decrease in both mortalities and DALYs over the same period.

Figure 7e,f, depicting mortalities and DALYs resulting from HAP, show rising trend in all middle east coun-
tries, signaling an annual rise in mortalities and DALYs resulting from HAP, except for Kuwait and Iraq where 
no change is observed. Figure 7c,d, illustrating Mortalities and DALYs resulting from AOP, reveal rising pattern 
in selected middle east countries except for Iran, which exhibits a different pattern.

Visualizations for NN
The plots designed for eight Middle East countries to analyze trend (2020–2030).

The predicted values for the years 2020–2030 were visualized for ANN models. In Fig. 8a,b illustrating mor-
talities and DALYs resulting from PMP an upward trend is evident in all countries indicating an annual increase 
in the number of mortalities and DALYs resulting from PMP, except in Syria and Maldives where a downward 
trend suggests a decrease in both Mortalities and DALYs. Figure 8e,f, portraying mortalities and DALYs resulting 
from HAP, exhibit an upward pattern in selected middle east countries, signaling an annual rise in mortalities and 
DALYs resulting from HAP, except for Kuwait and Iraq where no change is observed. Figure 8c,d, representing 
mortalities and DALYs resulting from AOP, reveal a rising trend in middle east countries, except in Iran, which 
displays a different pattern.

Descriptive statistics
Mortality resulting 
from PMP

Mortality resulting 
from AOP

Mortality resulting 
from HAP

DALYs resulting from 
PMP

DALYs resulting from 
AOP

DALYs resulting 
from HAP

 3rd quartile 3267 89.35 3340 84,711 481.3 85,879

 Maximum 3423 93.11 3493 88,591 1554.1 89,749

 SD 544.836 17.59203 557.988 10,210.22 240.756 10,371.3

 Variance 296,846 309.4797 311,351 104,248,505 57,963.4 107,563,862

Saudi Arabia

 N 30 30 30 30 30 30

 Minimum 9105 162.2 9196 354,261 3238 356,080

 1st quartile 10,587 194.2 10,715 378,835 4005 381,465

 Median 12,906 225 13,050 448,078 4823 451,182

 Mean 13,036 225.6 13,182 465,874 4972 469,101

 3rd quartile 15,135 249.1 15,288 533,069 5656 536,605

 Maximum 17,832 310.1 18,036 654,330 7441 659,239

 SD 2734.66 42.0426 2761.734 94,490.13 1212.26 95,272.83

 Variance 7,478,361 1767.58 7,627,175 8,928,385,492 1,469,566 9,076,911,465

Qatar

 N 30 30 30 30 30 30

 Minimum 174.6 2.145 175.9 7409 53.47 7441

 1st quartile 229.4 2.995 231.2 9031 76.01 9078

 Median 285.1 3.826 287.4 11,569 98.26 11,627

 Mean 313.8 4.437 316.5 13,784 115.55 13,854

 3rd quartile 393.4 5.284 396.5 18,568 140.87 18,651

 Maximum 539.3 9.23 545 24,894 237.18 25,039

 SD 108.113 2.022973 109.306 5683.733 53.238 5715.042

 Variance 11,688.4 4.092418 1947.77 32,304,818 2834.29 32,661,700

Table 1.   Descriptive statistics for time-series variables in middle east countries.
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Comparative study
The study used the ARIMA, Exponential Smoothing (ES), Support Vector Machines (SVM) and Artificial Neu-
ral Networks (ANN) methods for data analysis. The degree of accuracy of these models was measured using 
a statistical criterion known as Mean Absolute Percentage Error (MAPE). MAPE is a very easy to understand 
approach of determining the accuracy of a forecast because it portrays the percentage difference between the 
forecast and the actual outcome. This metric is useful to understand how effective each of the method of fore-
casting is in time series analysis.

Table 3 provides an evaluation of the forecasting performance of different models with measurement in Mean 
Absolute Percentage Error (MAPE) and with the models applied which includes ARIMA, Exponential Smooth-
ing (ES), Support Vector Machines (SVM), and Artificial Neural Networks (ANN). SVM and ANN are machine 
and deep learning model respectively has greater accuracy than the traditional statistical models such as ARIMA 
and ES. Namely, with regard to the set pollution variables in the Middle Eastern countries, SVM was found to 
outperform all compared classifiers in a consistent manner. In the context of the United Arab Emirates (UAE), 
it is possible to state that SVM provides lower MAPE values as compared to ARIMA, ES, and ANN across the 
different flavors of pollution. For instance, in the task of Mortality due to Particulate Matter Pollution (PMP), 

(a) Mortality resulting from PMP (b) DALYs resulting from PMP

(c) Mortality resulting from AOP (d) DALYs resulting from AOP

(e) Mortality resulting from HAP (f) DALYs resulting from HAP

Fig. 4.   Time series chart for mortalities and DALYs resulting from pollution.
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SVM has a phenomenal performance with the help of MAPE 0. 900, which is higher than other models such 
as ARIMA, which gave an RMSE of 24. 271, ES with 20. 607; and ANN with 22. 44. As with the other pollution 
variables, SVM gives lower MAPE values for AOP (5. 786) and HAP (0. 520).

While SVM currently exhibits superior performance in this context, it is important to recognize that ANN 
has the potential to excel, especially with more extensive datasets. The findings highlight SVM’s reliability for 
pollution-related health predictions in the Middle East, but researchers should also consider ANN’s scalability 
and potential for improved performance with larger datasets. This underscores the importance of selecting the 
most suitable model based on the specific dataset characteristics and forecasting requirements.

Discussion
The unique aspect of this research lies in its dedicated focus on the Middle East countries and their contribu-
tions to air pollution along with the consideration of Air Quality Action Plans (AOP). This research goes a 
step further by delving into the forecasted health consequences including potential Mortalities and disabilities 
resulting from air pollution in the Middle East. This research comprises time series analysis and machine learn-
ing methods. The usage of machine learning models shows an exit from common practices in air pollution 
forecasting. The complexity of the research is augmented by the need to gather and integrate data from various 
sources surrounding air quality, health and environmental factors across several Middle East countries. The 
study presents a novel solution to navigate this data puzzle. This research extends beyond ordinary prediction, 
aiming to provide actionable intuitions for policymakers. These insights become precious tools for making 
informed decisions. The research acknowledges the unique characteristics and challenges of each Middle East 
country tailoring its forecasts to align with the specific situations in these nations. The research accepts a global 
perspective suggesting that the methods and findings could offer valuable insights for other regions dealing with 
similar pollution issues. It contributes to a broader understanding of the health impacts of air pollution in the 
Middle East offering a fresh perspective on this critical issue and presenting a model that could inform strategies 
for fighting pollution worldwide.

The implications of the results from this study are thereby significant in different fields. This research helps the 
public health departments to predict pollution and corresponding health effects and makes timely and efficient 
interventions possible because of the comparative study of the classical statistical models and the more sophis-
ticated machine learning approaches. These understandings can hence be helpful for environmental agencies in 
improving the means by which air quality is being observed and also improving the management and mitigation 
of it. The work is useful to help health departments and government agencies minimize inefficiency in the use 
of resources if they are to apply the most accurate predictive models to areas with increased risks to the health 

Table 2.   Comparison with BIC.

DALYs Mortalities

PMP AOP HAP PMP AOP HAP

BIC score

Syrian Arab Republic

Arima 712.93 453.59 712.55 508.36 278.91 509.11

ES 695.12 427.34 695.19 474.01 252.87 474.64

Iraq

Arima 719.81 475.05 720.06 533.58 290.39 534.26

ES 671.85 451.26 672.18 506.18 274.52 506.77

Kuwait

Arima 623.12 329.16 624.11 421.38 181.06 422.09

ES 586.66 311.17 586.97 388.87 161.72 389.59

United Arab Emirates

Arima 683.93 511.15 686.31 471.28 298.59 473.8

ES 652.17 481.02 654.18 445.03 280.71 447.19

Islamic Republic of Iran

Arima 739.34 594.42 740.46 568.78 438.78 573.77

ES 698.50 558.36 726.55 532.80 411.94 537.70

Lebanon

Arima 629.02 401.05 629.61 453.78 247.79 457.89

ES 587.52 371.12 587.96 423.46 226.71 426.12

Saudi Arabia

Arima 738.10 493.80 738.64 541.49 306.26 542.07

ES 692.75 465.53 693.30 512.70 284.04 513.27

Qatar

Arima 575.87 290.01 574.27 346.73 111.57 347.47

ES 536.11 271.31 538.41 318.87 102.28 319.68
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of the people. The results may be used by the policymakers to provide regulations and guidelines that is based 
on facts to control air pollution and ultimately enhance public health. It also assists in creating awareness of 
the adverse effects of air pollution to the health of people hence increases the level of support by the public on 
environmental conservation. In conclusion, this study provides the guidelines for the further scientific work; 
opening the horizon for improvements and innovations in the field of environmental health prediction. The 
study offers a positive return on investment to the society by improving public health approaches, environmental 
surveillance, and decisions and policies.

Conclusion
This paper analyses the effects of air quality on health status in Middle Eastern countries employing Traditional 
and machine- learning forecasting models. Large differences were detected in pollution impacts as revealed by 
differences in mean values, SD values and range in each considered country. The analysis showed rising trends 
in mortalities and DALYs due to the three different types of pollution under study from 1990 to 2019. Among 
the models, SVM consistently outperformed others in accuracy, with a MAPE of 0.900 for predicting PMP mor-
talities in the UAE, compared to ARIMA’s 24.271, ES’s 20.607, and ANN’s 22.44. While SVM demonstrated the 

(a) Mortality resulting from PMP (b) DALYs resulting from PMP

(c) Mortality resulting from AOP (d) DALYs resulting from AOP

(e) Mortality resulting from HAP (f) DALYs resulting from HAP

Fig. 5.   Plots for forecasting using ARIMA.
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best overall performance, ANN showed potential, particularly with larger datasets, as seen in predicting DALYs 
from PMP in Iraq, where it achieved a MAPE of 0.794 versus SVM’s 0.887 and ARIMA’s 2.191. The comparison 
of models using the MAPE metric reveals SVM’s reliability and accuracy in predicting health outcomes related 
to air pollution. However, the study acknowledges the potential of ANN to excel particularly with more exten-
sive datasets. The study emphasizes the uniqueness of its approach compairing traditional time series analysis 
with advanced neural network methodologies. It extends its implications globally. The study contributes to a 
broader understanding of this critical issue by offering a framework that could inform strategies worldwide. It 
presents a novel approach to forecasting and bridging the gap between traditional and advanced methodologies 
for more accurate and actionable predictions. These findings underscore the importance of selecting appropri-
ate forecasting models based on dataset characteristics and offer valuable insights for policymakers aiming to 
mitigate the health impacts of air pollution in the Middle East and similar regions globally. The study’s forecasts 
aid in emergency preparedness, while its comparative analysis of forecasting models helps refine predictive 
methodologies. Overall, it supports a comprehensive approach to mitigating air pollution and its health effects.

(a) Mortality resulting from PMP (b) DALYs resulting from PMP

(c) Mortality resulting from AOP (d) DALYs resulting from AOP

(e) Mortality resulting from HAP (f) DALYs resulting from HAP

Fig. 6.   Plots for forecasting all variables using ES.
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(a) Mortality resulting from PMP (b) DALYs resulting from PMP

(c) Mortality resulting from AOP (d) DALYs resulting from AOP

(e) Mortality resulting from HAP (f) DALYs resulting from HAP

Fig. 7.   Plots for forecasting all variables using SVM.
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(a) Mortality resulting from PMP (b) DALYs resulting from PMP

(c) Mortality resulting from AOP (d) DALYs resulting from AOP

(e) Mortality resulting from HAP (f) DALYs resulting from HAP

Fig. 8.   Plots for forecasting all variables using Artificial NN.
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Data availability
All data analyzed in the course of this research were sourced from the “Institute of Health Metrics and Evaluation 
GBD” website, covering the years 1990 to 2019. The data can be accessed through the following link: https://​
ghdx.​healt​hdata.​org/​gbd-​2019.

Table 3.   Comparison of models from MAPE.

Countries Measure Variables

MAPE

ARIMA ES SVM NN

Syrian Arab Republic

Mortalities

Particulate matter pollution 5.495 5.264 2.580 0.998

Ambient ozone pollution 6.274 7.099 3.337 3.010

Air pollution 5.469 5.226 2.425 3.469

DALYs

Particulate matter pollution 6.061 5.374 2.460 1.247

Ambient ozone pollution 6.934 6.260 3.543 3.053

Air pollution 6.000 5.208 2.364 1.880

Iraq

Mortalities

Particulate matter pollution 4.257 4.035 1.965 2.295

Ambient ozone pollution 9.819 8.274 8.184 13.567

Air pollution 4.269 4.059 1.941 3.569

DALYs

Particulate matter pollution 2.191 2.076 0.794 0.887

Ambient ozone pollution 10.727 8.239 6.849 10.143

Air pollution 2.197 2.076 0.803 0.810

Kuwait

Mortalities

Particulate matter pollution 14.063 16.288 5.158 6.778

Ambient ozone pollution 21.218 22.054 8.000 14.455

Air pollution 14.107 16.332 5.212 7.107

DALYs

Particulate matter pollution 12.038 12.109 4.965 6.074

Ambient ozone pollution 16.170 12.624 10.177 19.439

Air pollution 12.054 10.017 4.931 5.509

United Arab Emirates

Mortalities

Particulate matter pollution 24.271 20.607 0.900 22.44

Ambient ozone pollution 29.998 33.737 5.786 6.741

Air pollution 24.445 19.427 0.520 8.225

DALYs

Particulate matter pollution 18.156 14.054 0.384 3.965

Ambient ozone pollution 27.416 33.233 5.290 7.300

Air pollution 18.355 14.231 0.677 1.903

Islamic Republic of Iran

Mortalities

Particulate matter pollution 4.107 4.098 0.570 4.783

Ambient ozone pollution 17.883 14.976 3.081 7.274

Air pollution 4.394 4.339 0.637 1.147

DALYs

Particulate matter pollution 2.095 2.184 0.600 0.721

Ambient ozone pollution 12.269 10.570 2.934 1.676

Air pollution 2.147 2.144 0.645 0.614

Lebanon

Mortalities

Particulate matter pollution 6.652 8.331 4.457 4.495

Ambient ozone pollution 9.705 10.399 2.873 4.583

Air pollution 5.954 8.188 4.567 9.580

DALYs

Particulate matter pollution 4.292 4.474 1.564 7.570

Ambient ozone pollution 6.883 7.074 3.027 4.887

Air pollution 4.256 4.462 1.372 3.493

Saudi Arabia

Mortalities

Particulate matter pollution 7.462 7.519 0.923 1.927

Ambient ozone pollution 7.987 8.246 6.188 4.849

Air pollution 7.456 7.521 0.951 1.535

DALYs

Particulate matter pollution 5.393 4.868 0.714 1.936

Ambient ozone pollution 9.128 9.218 6.388 13.527

Air pollution 5.412 4.886 0.736 2.533

Qatar

Mortalities

Particulate matter pollution 11.023 9.845 2.001 3.165

Ambient ozone pollution 20.558 19.040 4.103 14.354

Air pollution 11.096 9.892 1.959 4.615

DALYs

Particulate matter pollution 11.590 9.889 3.886 6.376

Ambient ozone pollution 14.463 12.144 3.016 3.258

Air pollution 10.678 10.189 3.781 3.893

https://ghdx.healthdata.org/gbd-2019
https://ghdx.healthdata.org/gbd-2019
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