Table 3 Performance of the models—without ensemble.

From: Ensemble machine learning framework for predicting maternal health risk during pregnancy

Classifier

Class

Count

TP

TN

FN

FP

 

Precision

Recall

F1

DT

HR

272

232

704

38

40

 

0.859259259

0.852941176

0.856088561

LR

406

319

499

109

87

0.745327

0.785714286

0.76498801

MR

336

214

576

102

122

0.677215

0.636904762

0.656441718

Total

1014

765

1779

249

249

Overall → 

0.754438

0.754438

0.754438

      

Weighted → 

0.753319158

0.75443787

0.753457236

RF

HR

272

243

714

28

29

 

0.896678967

0.893382353

0.895027624

LR

406

342

519

89

64

0.79350348

0.842364532

0.817204301

MR

336

236

602

76

100

0.756410256

0.702380952

0.728395062

Total

1014

821

1835

193

193

Overall → 

0.809664694

0.809664694

0.809664694

      

Weighted → 

0.808888499

0.80966469

0.808652072

GBT

HR

272

250

713

29

22

 

0.896057348

0.919117647

0.907441016

LR

406

337

561

47

69

0.877604

0.830049261

0.853164557

MR

336

278

605

73

58

0.792023

0.827380952

0.809315866

Total

1014

865

1879

149

149

Overall → 

0.853057

0.853057

0.853057

      

Weighted → 

0.854195807

0.85305720

0.853194179

KNN

HR

272

243

695

47

29

 

0.837931034

0.893382353

0.864768683

LR

406

309

525

83

97

0.788265306

0.761083744

0.77443609

MR

336

241

587

91

95

0.725903614

0.717261905

0.721557

Total

1014

793

1807

221

221

Overall → 

0.782051282

0.782051282

0.782051282

      

Weighted → 

0.780923639

0.78205128

0.781145215