Table 4 Performance of the models—With Bagging.

From: Ensemble machine learning framework for predicting maternal health risk during pregnancy

Bagging

Class

Count

TP

TN

FN

FP

 

Precision

Recall

F1

With DT

HR

272

237

700

42

35

 

0.849462366

0.871323529

0.860254083

LR

406

323

499

109

83

0.747685185

0.795566502

0.770883055

MR

336

205

580

98

131

0.676567657

0.610119048

0.641627543

Total

1014

765

1779

249

249

Overall → 

0.75443787

0.75443787

0.75443787

      

Weighted → 

0.75142079

0.75443787

0.75202612

With RF

HR

272

242

717

25

30

 

0.906367041

0.889705882

0.897959184

LR

406

335

515

93

71

0.782710

0.825123153

0.803357314

MR

336

235

594

84

101

0.736677

0.699404762

0.717557252

Total

1014

812

1826

202

202

Overall → 

0.800789

0.800789

0.800789

      

Weighted → 

0.800626943

0.800788955

0.800302963

With GBT

HR

272

248

712

30

24

 

0.892086331

0.911764706

0.901818182

LR

406

331

567

41

75

0.889784946

0.815270936

0.850899743

MR

336

283

597

81

53

0.777472527

0.842261905

0.808571429

Total

1014

862

1876

152

152

Overall → 

0.850098619

0.850098619

0.850098619

      

Weighted → 

0.853186331

0.850098619

0.850532388

With KNN

HR

272

201

185

35

71

 

0.851694915

0.738970588

0.791338583

LR

406

296

316

121

110

0.709832134

0.729064039

0.719319563

MR

336

226

294

135

110

0.626038781

0.672619048

0.648494

Total

1014

723

795

291

291

Overall → 

0.713017751

0.713017751

0.713017751

      

Weighted → 

0.720120211

0.713017751

0.715169297