Table 5 Performance of the models—With Boosting.
From: Ensemble machine learning framework for predicting maternal health risk during pregnancy
Boosting | Class | Count | TP | TN | FN | FP | Precision | Recall | F1 | |
---|---|---|---|---|---|---|---|---|---|---|
With DT | HR | 272 | 235 | 699 | 43 | 37 | 0.845323741 | 0.863970588 | 0.854545455 | |
LR | 406 | 322 | 497 | 111 | 84 | 0.743649 | 0.793103448 | 0.767580453 | ||
MR | 336 | 207 | 582 | 96 | 129 | 0.683168 | 0.616071429 | 0.647887324 | ||
Total | 1014 | 764 | 1778 | 250 | 250 | Overall → | 0.753452 | 0.753452 | 0.753452 | |
Weighted → | 0.750881746 | 0.75345168 | 0.751246714 | |||||||
With RF | HR | 272 | 244 | 715 | 27 | 28 | 0.900369004 | 0.897058824 | 0.898710866 | |
LR | 406 | 344 | 514 | 94 | 62 | 0.785388128 | 0.84729064 | 0.815165877 | ||
MR | 336 | 233 | 606 | 72 | 103 | 0.763934426 | 0.693452381 | 0.72698908 | ||
Total | 1014 | 821 | 1835 | 193 | 193 | Overall → | 0.809664694 | 0.809664694 | 0.809664694 | |
Weighted → | 0.809122205 | 0.80966469 | 0.80835802 | |||||||
With GBT | HR | 272 | 252 | 714 | 28 | 20 | 0.9 | 0.926470588 | 0.913043478 | |
LR | 406 | 329 | 564 | 44 | 77 | 0.882037534 | 0.810344828 | 0.844672657 | ||
MR | 336 | 278 | 595 | 83 | 58 | 0.770083102 | 0.827380952 | 0.797704448 | ||
Total | 1014 | 859 | 1873 | 155 | 155 | Overall → | 0.847140039 | 0.847140039 | 0.847140039 | |
Weighted → | 0.849758541 | 0.84714004 | 0.847449329 | |||||||
With KNN | HR | 272 | 203 | 190 | 40 | 69 | 0.835390947 | 0.746323529 | 0.788349515 | |
LR | 406 | 296 | 316 | 126 | 110 | 0.701421801 | 0.729064039 | 0.714975845 | ||
MR | 336 | 220 | 293 | 129 | 116 | 0.630372493 | 0.654761905 | 0.642336 | ||
Total | 1014 | 719 | 799 | 295 | 295 | Overall → | 0.709072978 | 0.709072978 | 0.709072978 | |
Weighted → | 0.713815332 | 0.70907298 | 0.710587849 |