Table 5 Performance of the models—With Boosting.

From: Ensemble machine learning framework for predicting maternal health risk during pregnancy

Boosting

Class

Count

TP

TN

FN

FP

 

Precision

Recall

F1

With DT

HR

272

235

699

43

37

 

0.845323741

0.863970588

0.854545455

LR

406

322

497

111

84

0.743649

0.793103448

0.767580453

MR

336

207

582

96

129

0.683168

0.616071429

0.647887324

Total

1014

764

1778

250

250

Overall → 

0.753452

0.753452

0.753452

      

Weighted → 

0.750881746

0.75345168

0.751246714

With RF

HR

272

244

715

27

28

 

0.900369004

0.897058824

0.898710866

LR

406

344

514

94

62

0.785388128

0.84729064

0.815165877

MR

336

233

606

72

103

0.763934426

0.693452381

0.72698908

Total

1014

821

1835

193

193

Overall → 

0.809664694

0.809664694

0.809664694

      

Weighted → 

0.809122205

0.80966469

0.80835802

With GBT

HR

272

252

714

28

20

 

0.9

0.926470588

0.913043478

LR

406

329

564

44

77

0.882037534

0.810344828

0.844672657

MR

336

278

595

83

58

0.770083102

0.827380952

0.797704448

Total

1014

859

1873

155

155

Overall → 

0.847140039

0.847140039

0.847140039

      

Weighted → 

0.849758541

0.84714004

0.847449329

With KNN

HR

272

203

190

40

69

 

0.835390947

0.746323529

0.788349515

LR

406

296

316

126

110

0.701421801

0.729064039

0.714975845

MR

336

220

293

129

116

0.630372493

0.654761905

0.642336

Total

1014

719

799

295

295

Overall → 

0.709072978

0.709072978

0.709072978

      

Weighted → 

0.713815332

0.70907298

0.710587849