Table 4 Confusion matrix and performance measures for SVM classification of wheat genotypes using Sigmoid and Degree-1 polynomial kernels.

From: Ensemble and optimization algorithm in support vector machines for classification of wheat genotypes

Performance statistics

Actual

Sigmoid kernel

Degree-1 polynomial kernel

L

M

H

L

M

H

Prediction

 L

19

3

0

16

2

0

 M

1

21

3

4

21

1

 H

0

1

11

0

2

13

Sensitivity

0.950

0.840

0.786

0.800

0.840

0.929

Specificity

0.923

0.882

0.978

0.949

0.853

0.956

Positive predictive value

0.864

0.840

0.917

0.889

0.808

0.867

Negative predictive value

0.973

0.882

0.936

0.902

0.879

0.977

Balanced accuracy

0.937

0.861

0.882

0.874

0.846

0.942

F-measure

0.905

0.840

0.846

0.842

0.824

0.897