Table 8 Confusion matrix and performance measures for SVM classification of wheat genotypes using GS, RS and GA algorithms.

From: Ensemble and optimization algorithm in support vector machines for classification of wheat genotypes

Performance statistics

Actual

GS-SVM (RS-SVM)

GA-SVM

L

M

H

L

M

H

Prediction

 L

17 (17)

4 (3)

0 (0)

19

2

0

 M

3 (3)

20 (21)

1 (0)

1

21

0

 H

0 (0)

1 (1)

13 (14)

0

2

14

Sensitivity

0.850 (0.850)

0.800 (0.840)

0.929 (1.000)

0.950

0.840

1.000

Specificity

0.897 (0.923)

0.882 (0.912)

0.978 (0.978)

0.949

0.971

0.956

Positive predictive value

0.810 (0.850)

0.833 (0.875)

0.929 (0.933)

0.905

0.955

0.875

Negative predictive value

0.921 (0.923)

0.857 (0.886)

0.978 (1.000)

0.974

0.892

1.000

Balanced accuracy

0.874 (0.887)

0.841 (0.876)

0.953 (0.989)

0.949

0.905

0.978

F-measure

0.829 (0.850)

0.816 (0.857)

0.929 (0.966)

0.927

0.894

0.933